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Abstract 
 
 
Cost growth in major DoD acquisition programs has been commonplace for the 

last 35 years, and shows no signs of improvement despite the adoption of new business 

practices legislation.  In the current environment where taxpayer dollars are heavily 

competed for, and the expenditure of those dollars is highly scrutinized, it has become a 

high priority in Department of Defense leadership to build accurate cost estimates that 

reduce overruns and  restore credibility to the defense acquisition process. 

Previous research has validated the use of two-pronged logistic and multiple 

regression approach that offers better predictive ability than the traditional multiple 

regression approach alone.  This research further validates the use of this two-pronged 

approach by applying it to the engineering and schedule cost growth categories. 

We update and augment previously collected programmatic data from the 

Selected Acquisition Reports (SARs) between 1990 and 2001 for programs covering all 

defense departments, with the latest SAR database (1990-2002).  We start the analysis by 

building logistic regression models to predict whether cost growth will occur.  Then we 

build multiple regression models to predict the extent to which a program will experience 

cost growth.  The response variables for our models are the respective cost growth on 

procurement-funded efforts in the engineering and schedule cost categories, during the 

Engineering and Management Development phase of the acquisition process. 
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ESTIMATING COST GROWTH IN ENGINEERING AND SCHEDULE COST 

CATERGORIES USING A TWO-PRONGED REGRESSION APPROACH 

 

I.  Introduction 
 

General Issue 
 

Defense spending has undergone great change in the last 20 years.  During the 

Reagan Administration of the 1980s, the Cold War saw high levels of defense spending.  

In 1985, the United States spent over $245 billion for national defense, a significant 

25.9% of the President’s Budget (OMB, 2004: 73, 78).  The arms race with the former 

Soviet Union kept funding for weapon system acquisition flowing with relative ease.   

As time passed, however, defense spending became heavily scrutinized as public 

perception of waste and excessive funding grew.  In the years following the Cold War, 

particularly under the Clinton Administration of the 1990s, the United States experienced 

record-setting reductions in defense spending.  By 2002, the budget for national defense 

hovered around $332 billion, a mere 16.5% of the President’s Budget (OMB, 2004: 75, 

80). 

Unfortunately, global threats to the security of the United States have not declined 

in the past 20 years, merely changed form.  This puts the defense acquisition community 

in the position of having to find ways to do more with less.  For this reason, elected 

representatives, as well as higher ranking members of the Department of Defense pay 

close attention to the cost performance of major defense acquisition programs (MDAPs).  

With each new administration, a movement to reform the Department of Defense’s 
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(DoD) major acquisitions programs and processes begins.  This movement has gained 

serious momentum over the past decade.  Major weapon systems being completed over 

budget and behind schedule is the motivation behind the current movement.   

 Cost growth in the procurement of major weapon systems can be attributed to 

poor program management or contractor inefficiencies, however, it mainly stems from 

risk and uncertainties about the program (Bielecki, 2003:2).  In a 1993 RAND study, 

Drezner and others sought to characterize cost growth (variance between initial and final 

contract baselines) against a wide variety of factors.  In general, they found that during 

the time period between McNamara’s reforms (1965) and 1990, cost growth hovered at 

around 20 percent, on average.  In the last 15 years, the DoD has seen more reforms such 

as the Packard Commission of 1986, the Goldwater-Nichols Act of 1987, and the 

Acquisition Reform movement.  In spite of claims that these reforms would lead to cost 

reductions, Air Force cost overruns grew another 9.9 percent (Suddarth, 2002:7).  This 

29.9 average cost growth is confirmed by the Assistant Secretary of the Air Force 

(Acquisition), Dr. Marvin Sambur, and the Deputy Chief of Staff for Air and Space 

Operations, Lieutenant General Ronald Keys, during their statement before the House 

Armed Services Committee on April 2, 2003 where they stated that for the Air Force, 

program execution problems had resulted in average cost growth of 30% for acquisition 

programs (Sambur/Keys, 2003). 

 In order for the DoD to retain its’ credibility with Congress and the American 

taxpayer, this cost growth must be slowed, contained, and reduced.  DoD program 

managers must concern themselves with accurately identifying the cost risks associated 

with potential cost increases in their program cost estimates.  To control cost growth, 
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managers must focus on accurately assigning dollar values to risks, so that the original 

estimate from which we calculate cost growth is more accurate (Bielecki, 2003:2) 

Specific Issue 
 
 The primary objective of weapon system cost estimating provides decision 

makers with an accurate estimate of the resources required to complete a project.  To this 

end, cost estimators have many methodologies at their disposal: analogy, engineering, 

actual, and parametric.  

The highly subjective analogy method compares a new system with an existing 

system for which there are accurate cost and technical data, and is most often used early 

in the program when little is known about the specific system being developed.  Later in 

the program, the engineering estimate, commonly referred to as the “bottom up” method, 

is used when the scope of work is well defined and a comprehensive Work Breakdown 

Structure (WBS) is in place.  Actual costs are used whenever they are available, but they 

are rarely available in the early stages of a program.   

The parametric (statistical) method is used to analyze our data during this 

research.  This method allows the cost estimator to objectively analyze large databases of 

historical data and make inferences about the relationship of the cost risk associated with 

one or more program parameters.  The parametric technique is used early in the program 

to estimate cost risks throughout the life cycle of a program using statistical regression 

techniques to develop cost estimating relationships (CER).   

Using regression to predict whether or not a program experiences cost growth, 

and the magnitude of that growth (should it occur) are the key focuses of this research.  

This study builds upon the thesis work of Bielecki (2003), Moore (2003), and Sipple 
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(2002) to provide the cost estimating community a model to accurately estimate cost risk 

of the engineering and schedule cost variance categories of the procurement 

appropriation during the EMD phase of defense acquisition programs. 

Scope and Limitations of the Study 
 
 Fundamental to any discussion of cost growth is the Selected Acquisition Report 

(SAR); “Since 1969, Congress has required DoD to submit SARs on its major acquisition 

programs” (Calcutt, 1993:3).  They are readily available and contain relatively reliable 

data on cost growth.  As SARs are the foundation from which cost growth is analyzed, so 

too, they are our source of data for this study.  The SAR contains the following three cost 

estimates useful for analyzing program cost growth: 

 
o Planning Estimate (PE): This is the DoD estimate normally made during 

the Concept Exploration and Definition  phase of the acquisition cycle 

(Calcutt, 1993:3). 

o Development Estimate (DE): This is the estimate established at Milestone 

II, which begins the Engineering and Manufacturing (EMD) phase of the 

acquisition cycle (Calcutt, 1993:3). 

o Current Estimate (CE): This is the most up-to-date estimate of what the 

program will cost at completion (Calcutt, 1993:3). 

 
The SAR reports cost variances in base year and then year dollars (allowing for 

analysis between programs on a constant dollar basis) and classified into one of the 

following seven categories: 
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1. Economic: changes in price levels due to the state of the national economy 

2. Quantity:  changes in the number of units produced 

3. Estimating:  changes due to refinement of estimates 

4. Engineering:  changes due to physical alteration 

5. Schedule:  changes due to program slip/acceleration 

6. Support:  changes associated with support equipment 

7. Other:  changes due to unforeseen events  

(Drezner, 1993:7) 

 
 The security classification of some of the programs will limit our research.  Any 

program with a confidential or higher classification will not be looked at in this study.  

Given that this type of information is not classified as confidential or higher on the vast 

majority of Major Defense Acquisition Programs (MDAPs), this limitation is viewed as 

having negligible impact on the utility of the model we build.  Other limitations exist 

within the SAR which are discussed further in Chapter 3. 

For the purposes of this research, cost growth is measured as a positive percentage 

increase from the DE to the latest CE as reported in the SAR.  Since we build upon the 

research previously fielded by Sipple, Bielecki, and Moore, we employ the same 

framework and methodologies initiated by Sipple and expanded by Bielecki and Moore.  

The difference being that this study focuses on the engineering and schedule cost 

variance categories of the procurement appropriation during the EMD phase of defense 

acquisition programs.  In particular, this research builds logistic and multiple regression 

models with predictor variables from the EMD phase that predict whether or not a 

program experiences cost growth (logistic) and, if it exists, how much it experiences 
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(multiple).  Additionally, we utilize the database conceived by Sipple (2002), update it to 

contain the latest CE (2002 data) of each program, if applicable, and add any new 

programs that are at least three years into the EMD phase (mature program). 

Research Objectives 
 
 The purpose of this research is twofold.  First, logistic regression (yes or no 

response) will be used to ascertain if there are certain parameters within the program that 

are able to predict if a program will experience cost growth in the engineering and 

schedule cost variance categories of the procurement appropriation during the EMD 

phase of program development.  Second, if cost growth is present, multiple regression 

will be used to determine how much growth occurs.   

Chapter Summary 
 
 This research expands the cost estimating methodology originally developed by 

Sipple, and further developed by Bielecki and Moore.  Our specific goal provides the cost 

estimating community an effective model to estimate the cost risk associated with a 

program early in its development, and the overall goal reduces the DoD cost growth rate 

from its current levels.  We continue with Sipple’s two step methodology — analyzing 

SAR historical data with logistical and multiple regression to successfully predict cost 

growth in the EMD of program development.  In the following chapter we present an 

overview of the acquisition process and its’ environment, examine cost risk and the effect 

it has on our study, and finally, investigate past research in cost growth. 
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II.  Literature Review 
 
 

Chapter Overview 
 
 This chapter establishes a historical framework from which to base our 

methodology and develop our models.  First, we discuss the acquisition process, past and 

present, and how that process affects our approach in this study.  Next, we look at the 

acquisition environment to familiarize ourselves with the increasing importance of these 

types of models.  Cost risk and its considerations are addressed after the environment has 

been established.  We conclude the chapter with a review of recent studies that have 

relevance to ours. 

The Acquisition Process 
 
 Being that this research focuses on a very specific portion of the overall 

acquisition process, we begin this chapter with a brief overview of how that process 

works and where our focus lies.  To this end, we start with Department of Defense 

Instruction (DoDI) 5000.2 Operation of the Defense Acquisition System, which 

“Establishes a simplified and flexible management framework for translating mission 

needs and technology opportunities, based on approved mission needs and requirements, 

into stable, affordable, and well-managed acquisition programs that include weapon 

systems and automated information systems.” (DoDI 5000.2, 2003:1). 
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Figure 2.1 - Acquisition Milestones and Phases (DoDI 5000.2, 2000:1) 

 
Figure 2.1 is a graphical representation of what the Defense Acquisition 

Management Framework looked like prior to a January 2001 change to DoDI 5000.2.  

We include this past business practice because the SAR data in our database is based on 

this format.  The process consists of four milestones (MS 0-MS III) and four phases 

(PHASE 0-PHASE III), described below.  This information was extracted from the DoD 

5000.2, prior to the Jan 2001 change. 

 
o Approval to conduct concept studies (MS 0)- The Milestone Decision 

Authority (MDA) approves short-term concept studies and the PHASE 0 

exit criteria. 

o Concept Exploration (PHASE 0)- Evaluate the feasibility of alternative 

concepts, determine the most promising concepts and solutions. 

o Approval to begin new acquisition program (MS I)- MDA approves the 

Acquisition Strategy, Cost as an Independent Variable (CAIV) objectives, 

initial Program Management Baseline (APB) and PHASE I exit criteria. 

o Program Definition and Risk Reduction (PHASE I)- Design the system, 

demonstrate critical processes and technologies, and develop prototypes. 
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o Approval to enter Engineering and Manufacturing Development (EMD) 

(MS II)- Approval of Acquisition Strategy, CAIV objectives, updated 

APB, Low-Rate Initial Production (LRIP) quantities, live-fire and Test 

and Evaluation (T&E) waiver (if applicable) and PHASE II exit criteria. 

o Engineering and Manufacturing Development (PHASE II)- Mature and 

finalize selected design, validate manufacturing and production processes 

and test and evaluate the system. 

o Production or fielding development approval (MS III)- Approval of 

Acquisition Strategy, production (weapon systems), deployment 

(information systems), updated APB and PHASE III exit criteria. 

o Production, Fielding or Deployment and Operational Support (PHASE 

III)- Produce system, field it, monitor mission performance, support 

fielded system, modify or upgrade as required. 

 
  

 

 

 

 

 

Figure 2.2 - Acquisition Milestones and Phases (DoDI 5000.2, 2001:1) 

 
Figure 2.2 is a graphical representation of what the Defense Acquisition 

Management Framework looks like now, due to the aforementioned change to the DoDI 
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5000.2 in January of 2001.  It replaces the traditional milestones with an ABC format and 

labels the phases by name (as opposed to numbering or lettering them).  The following is 

a brief overview of the new framework, taken from the current DoD 5000.2. 

 
o Concept Refinement Phase- Refine the initial concept and develop a 

Technology Development Strategy (TDS).  This phase cannot begin until 

the MDA makes a Concept Decision and does not mean that a new 

acquisition program has been initiated. 

o Milestone A- MDA approves the TDS. 

o Technology Development Phase- Reduce technology risk and determine 

the appropriate set of technologies that will be integrated into the full 

system.  This process is iterative in that it assesses the viability of 

available technologies and refines user requirements simultaneously. 

o Milestone B- The acquisition program has officially started.  For programs 

using Evolutionary Acquisition (which will be described in more detail 

later in this chapter), each increment will have its own Milestone B.  This 

is where the PM and MDA prepare and approve an Acquisition Strategy. 

o System Development and Demonstration- Develop full or increment of 

capability, reduce integration and manufacturing risk, ensure operational 

supportability, implement human systems integration, and design for 

producibility. 

o Milestone C- MDA commits the DoD to production and authorizes entry 

into LRIP, production and limited deployment for operational testing.                                       
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o Production and Deployment Phase- Achieve operational capability that 

satisfies mission needs, either incrementally or fully. 

o Operations and Support Phase- The two major components of this phase 

are sustainment and disposal.  The purpose being to ensure the system 

continues to perform its mission and is ultimately disposed of properly. 

 
As you can see, we did not go into as much detail on the new acquisition framework as 

we did on the old.  The reason for this is simple: our study is based on the old phases and 

milestones because all of our historical data (from the SARs) is based on the old process.  

It is also important to note at what point we focus on in the acquisition process.  

 

Figure 2.3 - Acquisition Timeline (Dameron, 2001:4) 
 

Later in this chapter, we review the thesis work on this subject of our 

predecessors (Sipple, Bielecki and Moore).  Sipple focuses on the engineering cost 

variance (CV) category and Bielecki on the estimating, schedule, support, and other 
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categories of the RDT&E appropriation.  While these studies target specific CV 

categories, Moore targets the overall procurement appropriation in the EMD phase.  Our 

research focuses on the individual CV categories of engineering and schedule.  We make 

the assumption that the cost estimator is more concerned with specific areas of cost 

growth. 

The Acquisition Environment 
 

The acquisition process is under great scrutiny as evidenced by the sweeping 

changes in the overall acquisition framework in January of 2001.  The changes, however, 

do not stop there.  The latest initiative to revamp the current acquisition process is traced 

back to September 2002 when the Secretary of Defense issued an unsigned memorandum 

stating that the current regulations were “overly prescriptive and do not constitute an 

acquisition policy environment that fosters efficiency, creativity and innovation.” As a 

result, said the memo, the 5000 series, which includes versions 5000.1 and 5000.2, would 

be “cancelled ... effective immediately.” (Erwin, 2002)   

On 12 May of this year (2003), DoD Directives 5000.1 and 5000.2, were signed 

by the Deputy Secretary of Defense and replaced the same directives previously dated 

October 23, 2000.  One of the policies instituted by this directive is that of cost and 

affordability: 

 
All participants in the acquisition system shall recognize the reality of 
fiscal constraints.  They shall view cost as an independent variable(CAIV), 
and the DoD Components shall plan programs based on realistic 
projections of the dollars and manpower likely to be available in future 
years (DoD Directive 5000.1, 2003:4). 
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This policy indicates the importance of CAIV to program management and 

signifies the extent to which the OSD believes cost estimation should be used in 

budgeting.  Realistic projections become extremely important in that appropriated funds 

are scarce and under heavy supervision by multiple stakeholders.  In addition, when taken 

into account the number of government civil servants, military officers and enlisted 

troops that it takes to make funding changes, it is fair to assume that administrative costs 

due to poor planning are high, and could be reduced with more accurate initial estimates.  

For these reasons, each program manager must strive to get their cost estimations right, 

more often than not, so they can maintain their programs’ credibility with DoD 

executives, Congress, and the American public. 

The seriousness of this acquisition reform movement is echoed yet again in April 

2003 when Dr. Marvin Sambur, Assistant Secretary of the Air Force (Acquisition), and 

the Deputy Chief of Staff for Air and Space Operations, Lieutenant General Ronald 

Keys, state before the House Armed Services Committee: 

 
In the past, we have designed our programs with a 60-70% confidence 
level of meeting cost, schedule, and performance goals.  In order to be 
credible both to the warfighters and Congress, I have implemented a 90% 
confidence level in meeting our requirements.  By demanding 
collaboration between all the parties, we can ensure the right trade-offs are 
made throughout the acquisition process to meet the required goals.  It is 
imperative that, both the warfighting and acquisition communities work 
together to make tradeoffs of non-critical elements within programs to buy 
down risk, throughout the acquisition cycle.  Bottom line: credibility 
means delivering what we promise, on time and on budget (Sambur/Keys, 
2003). 
 

Clearly, a major concern in the acquisition community is that of credibility and 

fiscal responsibility.  And it would be difficult to have one and not the other.  To obtain 
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this credibility, the pressure is on the cost estimator to accurately predict the costs 

associated with the program at all phases of the system life cycle.  This is no easy 

challenge.  The methods available to the estimator range from subjective methods (quick 

and easy) to objective methods (time consuming and complex), both of which have their 

strengths and weaknesses, and both must address risk. 

Cost Risk 
 
 “Risk: Minimizing the possibility that something goes wrong” (Cancian, 

1995:191).  Cancian’s definition may appear oversimplified, but it’s a great place to start.  

As cost estimators, much of the risk we encounter involves uncertainty.  Uncertainty 

about the countless variables we have identified, and uncertainty about the variables we 

fail to identify.  These uncertainties have great potential to make “something go wrong” 

in our estimates.  This is especially true when attempting to estimate the cost of a system 

that has not yet been built.   

 A cost estimator must first identify and consider all areas of uncertainty 

associated with that system and related future events.  Once identified and estimated, the 

cost risk is translated into a dollar figure which can then be used by decision makers.  The 

Air Force Materiel Command (AFMC) Financial Management Handbook confirms 

“program risk refers to the uncertainties and consequences of future events that may 

affect a program”, and goes on to say that “risk is the summation of probable effects of 

unknown elements in technical, schedule, or cost related activities within the program.”  

The latter of these three risk parameters asks the question: “can the program as presently 

structured technically and with respect to schedule, be completed for the budgeted 

amount of money?” (AFMC Financial Management Handbook, 1998:11-20) 



 
 

15

 In the case of the Air Force’s most expensive acquisition program, the Advanced 

Tactical Fighter (a.k.a. the F-22 Raptor), the answer to this question has historically been 

“no”.  This program is an excellent example of how uncertainty creates risk.  Although 

there are countless factors (especially in the EMD phase) that can be held responsible for 

F-22 program cost growth, a very interesting uncertainty is worth mentioning.  According 

to a 1999 GAO report, “A factor the Air Force did not consider in its estimate of potential 

cost growth was the possibility that the F-22 program may have to absorb a higher share 

of the manufacturing plant’s overhead costs if the contractor does not sell enough C-130J 

aircraft, which are produced at the same plant as the F-22.” (GAO/NSIAD-99-55, 

1999:5).  Ironically, this is a factor that the Air Force would have easily been able to 

predict (since C-130J is also a DoD acquisition program) had they realized its potential 

impact on cost growth. 

 The F-22 program is also an excellent example of what could be argued is a 

program’s biggest risk of all: being cut.  Funding instability is a fact of life that the F-22 

has been dealing with for years.  This is because “as threats began to change, 

developmental challenges arose, and total ownership costs continued to mount, it was 

unlikely to be overlooked as a prime source of funding for other ‘must pay’ bills.” 

(Myers, 2002:322).  The truth of this statement is easily reflected in the Defense 

Subcomittee’s rationale behind their $1.8B cut in the 2000 Department of Defense 

Appropriations Bill: 

 
It is clear from a larger perspective, the F-22 is consuming resources that 
could be used to address other critical strategic concerns such as emerging 
threats from chemical/biological/nuclear terrorism, information warfare, 
and cruise missiles. (Defense Subcommittee, 2000) 
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       The bottom line is that a cost analyst must deal with countless unforeseen events 

in order to protect their program’s funding, and thus, the program itself.  The AFMC 

Financial Management Handbook discusses three methods the analyst can use to 

approximate the likelihood of a certain event occurring: a posteriori, (after the fact), a 

priori (a prediction based upon theoretical probability distributions), or subjective 

judgment (AFMC Financial Management Handbook, 1998:11-21).  No matter which 

method the estimator chooses, the end product will depend largely on the skill of the 

estimator, the level of accuracy required, the level of detail needed, and the time required 

(and available) to complete the estimate.  These are also the factors that will determine 

how well an analyst mitigates risk when applying their chosen methodology. 

 We mentioned in Chapter 1 that the cost estimating community has different cost 

estimating methodologies at their disposal including, but not limited to, analogy, 

engineering, actual, and parametric.  These methods are widely accepted and practiced in 

both the DoD and civilian sectors.  Figure 2.4 shows the techniques recognized by the 

Ballistic Missile Defense Organization (BMDO) cost estimating community.  These 

techniques are also widely accepted and practice in most cost estimating communities.  It 

is interesting to note that as the level of detail and difficulty of gathering the data 

increase, the level of precision tapers off.   
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Figure 2.4 - Risk Assessment Techniques (Coleman, 2000:4-9) 
 

In conclusion, risk needs to be addressed up front and early and the cost 

estimator’s role in this process is crucial.  This philosophy is made very clear by the Air 

Force Materiel Command (AFMC) Financial Management Handbook: 

Because resources are limited, considerable time and effort in planning for 
future acquisitions is necessary.  The central issue in such planning usually 
concerns resource allocation.  Cost analysis supports acquisition decisions 
required to allocate financial resources among alternative systems.  The 
acquisition process revolves around the cost estimate - budgets are based on 
estimates and future cost performance is measured against estimates.  Cost 
estimating must be accurate if the operation of the Planning, Programming, 
and Budgeting System (PPBS) is to be realistic, and effective decision 
making is to take place (AFMC Financial Management Handbook, 
1998:11-2) 
 

Past Research in Cost Growth 
 
 A benefit to doing continuing research on three comprehensive studies on cost 

growth is that the previous authors: Sipple, Bielecki, and Moore, provide us with an 

exhaustive review of the pertinent literature on cost growth from 1974 through 2001.  
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Sipple’s review of the literature was thorough enough that the follow-on work performed 

by Bielecki and Moore provides us with no relevant studies outside of their own findings.  

The important thing to note here is that the unique two-step methodology borne by Sipple 

to identify and then quantify cost growth is tangent to existing studies on predicting cost 

growth.   

Sipple provides us with twelve relevant studies on this matter, see Table 2.1.  For 

a complete review of the studies listed refer to Sipple (2002).  These studies influenced 

Sipple in his development and creation of the predictor variables used in both the 

logistical and ordinary least squares (OLS) models. 

 
Author (Year)

IDA (1974)
Woodward (1983)
Obringer (1988)
Singleton (1991)
Wilson (1992)
RAND (1993)

Terry & Vanderburgh (1993)
BMDO (2000)

Christensen & Templin (2000)
Eskew (2000)

NAVAIR (2001)
RAND (2001)  

 
Table 2.1 - Sipple Thesis (Sipple, 2002:20-44) 

 
 

Sipple Thesis 
 
 Where Sipple’s methodology differs from previous studies is that Sipple looks at 

predicting cost growth in the EMD phase of the system life cycle instead of attempting to 

predict overall cost growth for an entire system life cycle.  This approach affords us the 

ability to break down the cycle into its different phases: PDRR, EMD, and Prod and 
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further into the appropriations contained in each and study the effects that over 75 

predictor variables have on these appropriations given a particular phase.  Sipple is also 

unique in that he recognizes that the Y response variable (Engineering percent) exhibits a 

mixed distribution.  “About half of the distribution is continuous, while the other half is 

massed at one value, zero—indicating no cost growth.  This mixed distribution scenario 

generally calls for splitting the data into two sets” (Sipple, 2002:58).  We will utilize 

these same variables and two-step methodology in our approach to predict cost growth in 

the production phase given data from the EMD phase. 

The goal of Sipple’s research is to predict cost growth in the EMD Phase as it 

relates to RDT&E appropriations in the SAR engineering cost variance category.  Sipple 

collects SAR data and builds a database of over 75 predictor variables using 115 major 

acquisition programs.  He then uses logistic regression to first identify if cost growth 

exists.  If it exists, OLS regression is implemented to indicate how much cost growth will 

occur.  “Sipple demonstrates through the use of four regression models (A, B, C, D) that 

the combination of logistic and multiple regression produce similar predictive results as a 

traditional single-step multiple regression cost estimating methodology.  However, the 

two-step methodology is preferred to the single-step methodology because of the stronger 

statistical foundation achieved with the two-step method” (Bielecki, 2003:21). 

The first of the four models, Model A, uses logistic regression to predict whether 

or not a program will have cost growth (yes or no).  Programs with positive cost growth 

are given a response of “1” in the database, while programs with negative cost growth are 

given a response of  “0”.  Model A uses the predictor variables to regress the “0/1” 

response on 80 percent (90 data points) of the data points (the remaining 20 percent are 
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used to validate the models).  Model B uses OLS to predict the amount of cost growth 

that will occur.  Sipple builds Model B to regress the same variables on 47 of the 90 data 

points that were found to contain positive cost growth in Model A.  This time the 

response is the percentage of actual cost growth (instead of 0/1) and utilizes a log 

transformation on the Y response to correct for non-constant variance (heteroscedasticity) 

of the residuals.  Model C also uses OLS to predict the amount of cost growth, but does 

not correct for this heteroscedasticity and subsequently fails the OLS statistical 

assumptions of normality and constant variance (homoscedasticity) rendering it 

ineffective for drawing statistical conclusions about the amount of cost growth.  These A 

and B models represent the two-step method. 

Sipple builds Model D to test his two-step method against a single step or single 

model method.  Model D does not employ logistic regression.  Instead, OLS is used on 

the entire 90 data points and the response is not transformed.  Again, the underlying 

assumptions of normality and constant variance are not met without the log 

transformation.  Instead of predicting a “0” or “1” response, Model D will predict both 

negative and positive values.  In this case, programs with no cost growth will have a 

predictive response of zero or less. 

Upon validation of the four models using the 20 percent test set, Sipple found that 

both Models A and B accurately predicted the existence of cost growth and the amount of 

cost growth with about a 70 percent accuracy rate.  Model A utilizes seven out of 78 

possible predictor variables, while Model B uses three.  Model C does fairly well at 

predicting the validation data.  Using an 80 percent confidence bound, Model C contains 
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73 percent of the data, however, due to the violation of the OLS assumptions, it is 

unknown whether or not this confidence bound is a true 80 percent. 

Model D’s predictive ability is comparable to Model A.  Model A predicts 

correctly 66.06 percent of the validation points, while Model D predicts correctly 62.87 

percent of the validation points.  Comparing Model D to Model B, Sipple found that 

“Model B produces higher R2 values than Model D…Model B yields more predictive 

ability for the number of variables, and none of Model D’s versions can compare to the 

versions of Model B above two predictor variables” (Sipple, 2002:104). 

It would appear that the two-step methodology employing Models A and B is 

superior than using a one model approach.  The C and D Models seem to perform well, 

but their lack of conformity with underlying regression assumptions greatly reduces the 

ability of the user to accurately interpret their results (Sipple, 2002:113). 

 
Bielecki Thesis 

 Employing the same methodology and underlying philosophy, Bielecki carries 

Sipple’s work forward to research cost growth in the four remaining SAR cost variance 

categories: schedule, estimating, support, and other.  Bielecki employs logistic and 

multiple regression to build models aimed at identifying cost growth characteristics in 

each category as they relate to RDT&E appropriations in the EMD phase of the system 

life cycle. 

 Bielecki also finds that the distribution for each cost growth category are mixed 

— indicating the need for the two-step approach.  In addition, he observes that the other 

and support categories do not contain enough data to support a meaningful statistical 
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analysis.  Therefore, Bielecki limits his study to the remaining two categories: schedule 

and estimating. 

 As Sipple does before him, Bielecki builds a family of logistic and multiple 

regression models for each category and picks the best one for each.  The best logistic 

regression model submitted for each category validates at 85.71 percent and 78.26 

percent for the schedule and estimating categories respectively.  Using an 80 percent 

confidence bound, the best multiple regression model submitted for each category 

validates at 80.00 percent and 100 percent for the schedule and estimating categories, 

respectively.  

 
Moore Thesis 

 Unlike Sipple and Bielecki, Moore’s research does not focus on a specific SAR 

cost variance category.  Instead, Moore focuses on the procurement appropriation and 

any cost growth associated with it in the EMD phase of the system life cycle as he states 

this is the “next logical level” (Moore, 2003:16). 

 When Moore performs a preliminary analysis of his data, he found that the 

distribution for procurement cost growth during the EMD phase exhibits identical 

characteristics to those found by Sipple (Moore, 2003:21).  Meaning that there is a mixed 

distribution and the two-step methodology will be used. 

 The logistic regression model Moore submits for validation accurately predicts 

four out of the four data points available for validation.  Of the 25 data points randomly 

selected for validation, only four of them contained the variable FUE-based Maturity.   

Upon further validation, the model was found to accurately predict 37 out of the 39 data 

points used to build the model.  Therefore, this logistic model is found to be highly 
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predictive.  The multiple regression model Moore submits for validation also accurately 

predicts 100 percent of the predicted data points, using an 80 percent prediction interval 

(Moore, 2003:47). 

 
OSD CAIG Study 

 In addition to the above three theses, a study by the Office of the Secretary 

Defense Cost Analysis Improvement Group (OSD CAIG) is found to be relevant to our 

study and is therefore included in our literature review. 

 The study, Cost Growth of Major Defense Programs, is the culmination of 10 

years of research between the OSD CAIG, NAVSHIPSO and AT&T.  This study uses the 

SARs of 286 programs as its source of data.  When bumped up against the study criteria: 

unclassified, milestone II captured, three years of data past milestone II, and data 

complete; these 286 programs are reduced to 142 and are entered into the database. 

 They define cost growth as the “difference between today’s estimate and a 

baseline estimate caused by:” 

 
o Poor initial estimates 

- Ill defined programs 

o Different program than originally conceived 

- Different procurement quantities 

- Requirement changes 

o Inefficiencies 

- Too many people 

- Too much money 
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- Lack of focus 

o Other  

(Cost Growth of Major Defense Programs, 2003:6) 

 
The main objective of the study is to identify how much of cost growth is 

attributable to: 1) decisions: discretionary changes to the system relative to the 

description at milestone II , and 2) mistakes: changes not attributable to discretionary 

changes post milestone II. Also, a main objective is to establish a historical record for 

comparison between systems (Cost Growth of Major Defense Programs, 2003:10).   

The results of the study follow: 

 
o Cost growth appears to have a correlation with commodity 

o Cost estimating assumptions account for majority of mistakes cost growth 

o Under estimating engineering effort is major source of RDT&E growth 

o Nearly half of perceived cost growth is content change (i.e. decisions) 

o Procurement cost growth is primarily due to optimistic learning curves 

o Majority of systems do not have significant growth 

o Higher cost systems appear to have less growth 

(Cost Growth of Major Defense Programs, 2003:66). 

 
 Note that this study, like Sipple, Bielecki, and Moore’s, evaluate cost growth as of 

the EMD phase of the system life cycle.  Where this study differs is that the OSD and 

company do not focus on a single SAR cost variance category or a single appropriation.  

Instead, they seek to categorize cost growth into one of two categories: decisions or 

mistakes.  From the results of their study we take away their finding that cost estimating 
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assumptions account for the majority of cost growth in the mistakes category.  This is 

consistent with most of our research as it reemphasizes the importance of generating 

accurate cost estimates up front and early in the acquisition process. 

Chapter Summary 
 
 In this chapter, we discussed how the current acquisition process works as 

compared to how it used to work and explained why our study would need to analyze the 

old business practices.  We also explored why accurate cost estimating is critical in 

today’s acquisition environment, with heavy oversight, multiple stakeholders, scarce 

funding and numerous worldwide threats and ways to mitigate them.  Upon examining 

the current acquisition environment we pointed out how risk is inherent in cost estimating 

due to countless unknowns, and that it is crucial to discover and address these unknowns 

up front and early.  Finally we highlighted the relevant findings of recent studies in this 

area in order that we may approach our own research with an arsenal of “lessons 

learned”. 
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III.  Methodology 
 
 

Chapter Overview 
 

This chapter addresses the database to be used in our research, the response and 

predictor variables found in that database, the two-step methodology, important 

assumptions, and the methodology for integrating those variables into logistic and 

regression models to predict cost growth. 

Database 
 
 We will use the same database originally created by Sipple and later updated by 

Bielecki and Moore.  We do make several changes, however: 

 
o We update the data with any new SARs (i.e. 2002).  This entails adding four 

programs that meet the eligibility criteria (to be discussed later) 
 

o We validate existing data with most current SAR and make necessary corrections. 
 

o We review empty data fields and populate them (if the data can be found) 
 

o We number the predictor variables for ease of use 
 

o We delete, modify and add, several predictor variables (to be discussed later) 
 
 

We accomplish these tasks using the same assumptions as Sipple: The program 

must be mature (i.e. be at least three years into the EMD phase) and use the Milestone 

I,II,III format (as opposed to the new A,B,C format).  We also acknowledge that the 

SARs do have a number of limitations, originally pointed out in the 1992 RAND report 

by Paul Hough (Bielecki, 2003): 

 



 
 

27

o Failure of some programs to use a consistent baseline cost estimate 

o Exclusion of some significant elements of cost 

o Exclusion of certain classes of major programs (e.g., special access programs) 
 

o Constantly changing preparation guidelines 

o Inconsistent interpretation of preparation guidelines across programs 

o Unknown and variable funding levels for program risk 

o Cost sharing in joint programs 

o Reporting of effects of cost changes rather than their root causes  
 
 

Despite these limitations, we conclude that the SAR is the best available source 

for this type of data.  For a detailed discussion on these limitations, see Bielecki 

(2003:27-32).  Please note that there are four variables that were populated from the Rand 

Report.  These variables include prototype, prototype phase, modification, weapon type, 

whether or not the program had a MS I, and service.  The complete database contains 

135 data points (acquisition programs), four response variables, and 81 predictor 

variables from major DoD acquisition programs reported on from 1990-2002. 

Response Variables 
 
 Our models have four different response variables, two discrete and two 

continuous.  The discrete response variables predict whether a program will experience 

cost growth: 

 
o Engineering Cost Growth?  Procurement  – binary variable:  1 for yes and 0 for 

no  
 

o Schedule Cost Growth?  Procurement  – binary variable:  1 for yes and 0 for no 
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Our continuous response variables predict the amount of cost growth that will be 

experienced, in percentage format.  We use the percentage format (instead of dollars) to 

achieve standardized responses from programs of different size.  For reasons that will be 

explained later, this variable is transformed using a natural log.   

 
o Engineering Cost Variance%,  Procurement  – continuous variable, percentage 

  
o Schedule Cost Variance%,  Procurement  – continuous variable, percentage 

 

Predictor Variable Updates 
 
 The predictor variables used by Sipple, Bielecki and Moore are quite extensive, 

and in many cases very complex.  With the intent of scrubbing our data, we review all of 

the predictor variables to determine if any need to be removed, modified or added.  First, 

we remove the following variables for the reasons stated.   

 
o Maturity from MSII in mos 

• In cases where the latest SAR takes place after MSIII, the time between 
the two points is incorrectly added to the full length of the EMD phase 
 

o Actual Length of EMD using FUE-MSII in mos/FUE-based Maturity of EMD% 
 

• FUE and IOC are interchangeable terms, and the database now contains an 
IOC variable that incorporates both 
 

o MSIII Complete?   
 

• Users of our model would have no need to predict cost growth in the EMD 
phase if MSIII had already completed 

 
o RAND Concurrency Measurement Interval & RAND Concurrency Measurement 

Interval % 
 

• These measurements assume MSIII has already occurred, in which case 
the user would have no need to predict EMD phase cost growth 
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o Class at Least S 
 

• Since we do not look at programs with security clearance higher than 
secret, and already have a variable for secret programs, this variable is 
redundant 

 
o Terminated? 

 
• Users would have no need to predict cost growth if their program was 

terminated 
 

o Qty in PE 
 

• Removed because it had only 7 observations 
 

 
Next, we update the following variable to correct a flaw in the formula which 

allows impossible values to be calculated.  We modify other variables in name only, to 

better reflect what the variable represents.  These name changes are minor and are not 

reflected here. 

 
o Maturity of EMD %  

 
• The way in which this variable was previously calculated, values of 

greater than 100% were obtained in many cases.  Logic was built into the 
math which prevents this 
 
 

Finally, we add the following variables to the list originally created by Sipple and 

updated by Bielecki and Moore. 

 
o ACAT 1? – binary variable: 1 for yes and 0 for no 
 
o Service = Marines Only – binary variable:  1 for yes and 0 for no 
 
o LRIP Qty Planned – continuous variable to indicate the quantity in the baseline 

estimate 
 
o LRIP Qty Current Estimate – continuous variable to indicate the quantity as 

currently estimated in the latest SAR 
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o LRIP Planned? – binary variable:  1 for yes and 0 for no; indicates if the program 

had LRIP planned 
 
o % R&D of Total Program – continuous variable calculated by dividing Length of 

R&D in Funding Yrs by Funding YR Total Program Length 
 
o % Prod of Total Program – continuous variable calculated by dividing Length of 

Prod in Funding Yrs by Funding YR Total Program Length 
 
o Fund Years of R&D + Proc Complete – continuous variable calculated by adding 

Funding Years of R&D Completed and Funding Years of Proc Completed  
 
o Length of R&D + Proc Funding Years – continuous variable calculated by adding 

Length of R&D in Funding Years and Length of Proc in Funding Years 
 

Predictor Variables 
 

The following pages reflect the aforementioned deletions, changes and additions, 

to the predictor variables. We continue to use Sipple’s variable categories: program size, 

physical type of program, management characteristics, schedule characteristics, and other 

characteristics.  This is the complete list of predictor variables we use in our logistic and 

multiple regression models.  For the purpose of a clean presentation, we do not use the 

numbering scheme here, but it is reflected in the Appendix. 

Program Size Variables 
 
 

o Total Cost CY $M 2002 – continuous variable which indicates the total cost of the 
program in CY $M 2002 

 
o Total Quantity – continuous variable which indicates the total quantity of the 

program at the time of the SAR date;  if no quantity is specified, we assume a 
quantity of one (or another appropriate number) unless the program was 
terminated 

 
o Unit Cost – continuous variable that equals the quotient of the total cost and total 

quantity variables above 
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o Qty Planned for R&D – continuous variable which indicates the quantity in the 
baseline estimate 

 
o Qty Currently Estimated for R&D  – continuous variable that indicates the 

quantity that was estimated in the Planning Estimate 
 

o ACAT 1? –binary variable: 1 for yes and 0 for no 
 

o LRIP Qty Planned – continuous variable to indicate the quantity in the baseline 
estimate 

 
o LRIP Qty Current Estimate – continuous variable to indicate the quantity as 

currently estimated in the latest SAR 
 

o LRIP Planned? – binary variable:  1 for yes and 0 for no; indicates if the program 
had LRIP planned 

 

Physical Type of Program 
 
 

o Domain of Operation Variables 
 

• Air – binary variable:  1 for yes and 0 for no; includes programs that 
primarily operate in the air;  includes air-launched tactical missiles and 
strategic ground-launched or ship-launched missiles 

 
• Land – binary variable:  1 for yes and 0 for no; includes tactical ground-

launched missiles; does not include strategic ground-launched missiles 
 

• Space – binary variable:  1 for yes and 0 for no; includes satellite 
programs and launch vehicle programs 

 
• Sea – binary variable:  1 for yes and 0 for no; includes ships and ship-

borne systems other than aircraft and strategic missiles 
 

o Function Variables 
 

• Electronic – binary variable:  1 for yes and 0 for no; includes all computer 
programs, communication programs, electronic warfare programs that do 
not fit into the other categories 

 
• Helo – binary variable:  1 for yes and 0 for no; helicopters; includes V-22 

Osprey 
 

• Missile – binary variable:  1 for yes and 0 for no; includes all missiles 
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• Aircraft – binary variable:  1 for yes and 0 for no; does not include 

helicopters  
 

• Munition – binary variable:  1 for yes and 0 for no 
 

• Land Vehicle – binary variable:  1 for yes and 0 for no 
 

• Space (Rand) –binary variable:  1 for yes and 0 for no 
 

• Ship – binary variable:  1 for yes and 0 for no; includes all watercraft 
 

• Other – binary variable:  1 for yes and 0 for no; any program that does not 
fit into one of the other function variables 

 

Management Characteristics 
 
 

o Military Service Management 
 

• Svs > 1 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

 
• Svs > 2 – binary variable:  1 for yes and 0 for no; number of services 

involved at the date of the SAR 
 

• Svs > 3 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

 
• Service = Navy Only – binary variable:  1 for yes and 0 for no 

 
• Service = Joint – binary variable:  1 for yes and 0 for no 

 
• Service = Army Only – binary variable:  1 for yes and 0 for no 

 
• Service = Marines Only – binary variable:  1 for yes and 0 for no 

 
• Service = AF Only – binary variable:  1 for yes and 0 for no 

 
• Lead Svc = Army – binary variable:  1 for yes and 0 for no 

 
• Lead Svc = Navy – binary variable:  1 for yes and 0 for no 

 
• Lead Svc = DoD – binary variable:  1 for yes and 0 for no 
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• Lead Svc = AF – binary variable:  1 for yes and 0 for no 

 
• AF Involvement – binary variable:  1 for yes and 0 for no 

 
• N Involvement – binary variable:  1 for yes and 0 for no 

 
• MC Involvement – binary variable:  1 for yes and 0 for no 

 
• AR Involvement – binary variable:  1 for yes and 0 for no 

 
 

o Contractor Characteristics 
 

• Lockheed-Martin – binary variable:  1 for yes and 0 for no 
 

• Northrup Grumman – binary variable:  1 for yes and 0 for no 
 

• Boeing – binary variable:  1 for yes and 0 for no 
 

• Raytheon – binary variable:  1 for yes and 0 for no 
 

• Litton – binary variable:  1 for yes and 0 for no 
 

• General Dynamics – binary variable:  1 for yes and 0 for no 
 

• No Major Defense Contractor – binary variable:  1 for yes and 0 for no; a 
program that does not use one of the contractors mentioned immediately 
above = 1 

 
• More than 1 Major Defense Contractor – binary variable:  1 for yes and 0 

for no; a program that includes more than one of the contractors listed 
above = 1 

 
• Fixed-Price EMD Contract – binary variable:  1 for yes and 0 for no 
 

Schedule Characteristics 
 
 

o RDT&E and Procurement Maturity Measures  
 

• Maturity (Funding Yrs complete) – continuous variable which indicates 
the total number of years completed for which the program had RDT&E 
or procurement funding budgeted 
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• Funding YR Total Program Length – continuous variable which indicates 

the total number of years for which the program has either RDT&E 
funding or procurement funding budgeted 

 
• Funding Yrs of R&D Completed – continuous variable which indicates the 

number of years completed for which the program had RDT&E funding 
budgeted 

 
• Funding Yrs of Proc Completed – continuous variable which indicates the 

number of years completed for which the program had procurement 
funding budgeted 

 
• Length of Proc in Funding Yrs – continuous variable which indicates the 

number of years for which the program has procurement funding budgeted 
 

• Length of R&D in Funding Yrs – continuous variable which indicates the 
number of years for which the program has RDT&E funding budgeted 

 
• R&D Funding Yr Maturity % – continuous variable which equals 49 

Funding Yrs of R&D Completed divided by 52 Length of R&D in Funding 
Yrs  

 
• Proc Funding Yr Maturity % – continuous variable which equals 50 

Funding Yrs of Prod Completed divided by 51 Length of Prod in Funding 
Yrs 

 
• Total Funding Yr Maturity % – continuous variable which equals Maturity 

(47 Funding Yrs complete) divided by 48 Funding YR Total Program 
Length 

 
• Fund Years of R&D + Prod Complete – continuous variable calculated by 

adding Funding Years of R&D Completed and Funding Years of Prod 
Completed  

 
• Length of R&D + Prod Funding Years – continuous variable calculated by 

adding Length of R&D in Funding Years and Length of Prod in Funding 
Years 

 
 

o EMD Maturity Measures  
 
 

• Actual Length of EMD – continuous variable calculated by subtracting the 
earliest MS II date from the latest MS III date indicated 
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• Maturity of EMD % – continuous variable calculated by dividing Maturity 
from MS II (current calculation in months) by 56 Actual Length of EMD 

 
• Time From MSII to IOC in months – continuous variable calculated by 

subtracting the earliest MS II date from the IOC date  
 

• Maturity of EMD at IOC % – continuous variable calculated by dividing 
Maturity from MS II (current calculation in months) by 57 Time From 
MSII to IOC in months 

 
o Concurrency Indicators 
 

• Proc Started based on Funding Yrs – binary variable:  1 for yes and 0 for 
no; if procurement funding is budgeted in the year of the SAR or before, 
then = 1 

 
• Proc Funding before MS III – binary variable:  1 for yes and 0 for no 

 

Other Characteristics 
 
 

o # Product Variants in this SAR – continuous variable which indicates the number 
of versions included in the EMD effort that the current SAR addresses  

 
o Class – S – binary variable:  1 for yes and 0 for no; security classification Secret 
 
o Class – C – binary variable:  1 for yes and 0 for no; security classification 

Confidential 
 
o Class – U – binary variable:  1 for yes and 0 for no;  security classification 

Unclassified 
 
o Risk Mitigation – binary variable:  1 for yes and 0 for no; indicates whether there 

was a version previous to SAR or significant pre-EMD activities 
 
o Versions Previous to SAR – binary variable:  1 for yes and 0 for no; indicates 

whether there was a significant, relevant effort prior to the DE; a pre-EMD 
prototype or a previous version of the system would apply 

 
o Modification – binary variable:  1 for yes and 0 for no; indicates whether the 

program is a modification of a previous program 
 
o Prototype – binary variable:  1 for yes and 0 for no; indicates whether the 

program had a prototyping effort 
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o Dem/Val Prototype – binary variable:  1 for yes and 0 for no; indicates whether 
the prototyping effort occurred in the PDRR phase 

 
o EMD Prototype – binary variable:  1 for yes and 0 for no; indicates whether the 

prototyping effort occurred in the EMD phase 
 
o PE? – binary variable:  1 for yes and 0 for no; indicates whether the program had 

a Planning Estimate 
 
o Significant pre-EMD activity immediately prior to current version – binary 

variable:  1 for yes and 0 for no; indicates whether the program had activities in 
the schedule at least six months prior to MSII decision 

 
o Program have a MS I? – binary variable:  1 for yes and 0 for no 

 
o % R&D of Total Program – continuous variable calculated by dividing Length of 

R&D in Funding Yrs by Funding YR Total Program Length 
 
o % Proc of Total Program – continuous variable calculated by dividing Length of 

Proc in Funding Yrs by Funding YR Total Program Length 
 

Model Building 
 

The only assumption about the regression model itself is that the response 

variables are reasonably continuous.  The distributions of the response variables for 

Sipple (2002), Bielecki (2003) and Moore (2003) were mixed (having both continuous 

and discrete characteristics).  This is the result of a mass at 0 (no cost growth).  The 

consequences of building multiple regression models that violate the assumption of being 

reasonably continuous translate into a violation of the assumption of homoscedasticity of 

the residuals.  As can be seen in Figure 3.1, the distributions of our two continuous 

response variables are also mixed, with a large mass at 0: 
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Figure 3.1 - Histograms of Engineering and Schedule responses 

 
Given past research and our obviously mixed distribution, we will also employ 

the 2-step methodology of using logistic regression to predict whether there will be cost 

growth, and multiple linear regression to predict how much that cost growth will be.  But 

before we can start building models, we partition the database. 

 
Partitioning of the Database  

Validation set partitioning must be done prior to model building, otherwise we 

will not be able to validate the models that we create.  “Validation” is essentially a test to 

see how well our models predict, using data points that we did not use in the building of 

the model. 

First, we reorder the data points (programs) in the database using a random 

number generator.  This is to ensure there is no bias between which data points are used 

to build and validate.  Then, we create a subset using the first 108 programs (this is 80% 

of the database).  This 80% is be used in all model building for the duration of our 

research.  Then, subset is created with the remaining 27 data points (20%), and saved for 

validation. 
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Logistic Regression 

By design, the purpose of a logistic regression model is to make a binomial “yes 

or no” prediction.  “1” means yes, and “0” means no.  For our research, we will build two 

logistic regression models to predict whether cost growth will occur in the engineering 

and schedule categories of programs funded with procurement dollars in the EMD phase. 

Given that we have 81 predictor variables, there are more than 30 billion possible 

combinations of 8-variable models.  While the only way to ensure we find the best model 

(8 variable or less) is to run all the combinations in statistical software program, it would 

be too time consuming to finish.  For this reason, we develop a sound methodology to 

hunt for highly predictive models.    

First, we run all the variables by themselves and record their pertinent statistics.  

This includes the p-values of the individual parameters, the average p-value, the R2(U) 

score, and the receiver operator characteristic (ROC) score.  We explain these evaluation 

measurements in chapter 4.  From these models, we choose the best 10 to 15 models, 

looking primarily for individual p-values of 0.05 or less.  These are our 1-variable 

models. 

We then run each of these best 1-variable models against all other variables to 

find combinations that perform well together, using the aforementioned criteria.  These 

results are recorded.  From this analysis, we find our best 2-variable models.  Then we 

look at these models to see if any become “marginal” when the second variable is added.  

Any “marginal” models will be removed.  Once we have our 2-variable models we look 

at the p-values of the individual parameters of all models created (both rounds) and look 

for variables whose p-value did not score below 0.1 either by themselves, or in 
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combination with any other variable.  Any variable that meets this criteria will be 

excluded from future models.  We do this to reduce the total amount of variables that 

have to be run, with the assumption that any variable that does not perform well by itself, 

or with any other variable, will not make it into any final model. 

We add the remaining variables in the same manner as the second variable, minus 

the “exclusion” step.  In other words, all variables that make it past the 2-variable round 

will be tested in all remaining rounds.  We will stop adding variables to the model when 

the data point-to-variable ratio drops under 10, or adding more variables no longer yields 

favorable results, whichever comes first.  As our data point-to-variable ratio drops below 

10, we begin to run the risk of over fitting our model, which reduces is statistical validity. 

The previous steps give us our final full model.  This model contains the “core” 

variables that will be in our final reduced model.  We find our final reduced model by 

manipulating the final full model.  This “manipulation” includes, but is not limited to, 

discretizing continuous variables, adding interaction terms, removing variables and 

mathematically combining variables.  Once we have our final reduced model, we will run 

it with the variables we excluded after the second round to make sure they do not 

contribute in a positive way.  Finally, we validate the final reduced model using the saved 

27 data points. 

 
Multiple Linear Regression 
 

Multiple linear regression, also known as ordinary least squares (OLS) regression, 

is used to predict the level of positive cost growth.  We have two reasons for predicting 

only positive cost growth.  The first is that we know we cannot use the range of positive 

to negative cost growth because it violates the assumption of being reasonably continuous 
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(i.e. it contains a discrete mass at zero).  The second is that the primary concern of the 

user is positive cost growth (i.e. no or negative cost growth is good).   

Another lesson that we have learned from past research in this area is that the 

assumption of constant variance of the residuals always fails unless you transform them 

using a natural log.  Figure 3.2 is a histogram of only the positive growth responses, 

before the transformation: 
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Figure 3.2 - Histograms of Only Positive Responses 
 

 
Given past research, we expect a log-normal distribution, and that is exactly what 

we get.  From this we make the assumption, that like past models dealing with cost 

growth, we must take the natural log of the responses to avoid heteroscedasticity of the 

model’s residuals.  When we do, we get somewhat normal distributions, as seen in Figure 

3.3. 
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Figure 3.3 - Histograms of Only Positive Responses (transformed) 
 

 
Now that we have transformed response variables, we build our models in the 

same manner we build our logistic regression models.  The only differences being that 

the measurement of adjusted R2 replaces the measurement of R2(U), and we do not have a 

ROC score. 

Chapter Summary 
 

This chapter details the overall methodology for building our predictive models.  

We discuss how we update the database which includes deletions, modifications and 

additions.  We also provide a current and comprehensive list of response and predictor 

variables that we use in model building, as well as the methodology for generating 

combinations of variables with predictive ability.  We present our findings in the 

following chapter. 
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IV.  Analysis Results 
 

Chapter Overview 
 

This chapter describes the results of our two logistic and multiple regression 

model analyses.  First, we conduct a preliminary data analysis on the database.  Second, 

we discuss our evaluation measures for logistic regression and our logistic regression 

results.  Finally, we discuss our evaluation measurements for OLS regression and our 

OLS regression results.   

Preliminary Data Analysis 
 

As previously stated, the purpose of this analysis is to determine what, if any, 

factors in the DoD acquisition community can be identified to accurately predict cost 

growth such that the risk of cost growth from the baseline estimate is reduced.  We use a 

two-pronged approach which first predicts whether positive cost growth will occur (using 

logistic regression), then the extent to which it will occur (using OLS regression).  The 

scope of our study includes the Engineering and Schedule SAR cost categories, with the 

response variables being cost growth in the EMD phase.  We only use 1990-2002 SAR 

data that have a DE baseline and a procurement appropriation. 

As stated in Chapter Three, the only assumption about the regression model itself 

is that the response variables are reasonably continuous.  The distributions of the 

response variables for Sipple (2002), Bielecki (2003) and Moore (2003) were mixed 

(having both continuous and discrete characteristics).  This is the result of a mass at 0 (no 

cost growth).  The consequences of building multiple regression models that violate the 

assumption of being reasonably continuous translate into a violation of the assumption of 
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homoscedasticity of the residuals.  As reiterated in Figure 4.1, the distributions of our two 

continuous response variables are also mixed, with a large mass at 0.  For this reason, we 

also employ the two-step process for each response variable by first performing logistic 

regression, then concluding with OLS. 
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Figure 4.1 - Histograms of All Responses 
 

 
The second issue we address during the preliminary data analysis is whether the 

response variables will be conducive to building and validating regression models.  

Specifically, we want to know two things.  First, will there be enough data points to both 

build the model and validate it?  Second, is the range of responses such that relationships 

can be discerned?  For example, if all the programs had the same responses, we would 

not be able to discern relationships given differences in the independent variables.  To 

accomplish this, we look at the distributions of the various responses.   

Figure 4.2 shows the distributions of the binomial cost growth responses for the 

Engineering and Schedule categories.  We see that both distributions contain 135 total 

observations.  This means that we will have 108 data points from which to build logistic 

regression models (80%) and 27 data points for validation (20%).  If we apply a strict 

10:1 data point to variable ratio, our models could contain up to 10 variables, so we 
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conclude that there are plenty of data points.  We also see that the distributions contain a 

desirable variety in the responses, as both contain 74 “trues” and 61 “falses”.  We 

conclude that the database is suitable for developing logistic regression models. 
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Figure 4.2 - Distribution of Logistic Regression Responses 
 

 
Figure 4.3 shows the distributions of the continuous cost growth responses for the 

Engineering and Schedule categories.  We see that both distributions contain 61 total 

observations.  This means that we will have 49 data points from which to build OLS 

regression models (80%) and 12 data points for validation (20%).  If we apply a strict 

10:1 data point to variable ratio, our models could contain up to five variables.  While we 

would prefer the flexibility to have more, five is sufficient.  We also see that the 

distributions, which visually appear to be log-normal, contain a wide variety of responses 
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between 0 and 1.  We conclude that the database is also suitable for developing OLS 

regression models. 
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Figure 4.3 - Distribution of OLS Responses 
 

 
Finally, the log-normal distributions in Figure 4.3 reiterate our discussion about 

the constant variance problems that Sipple encountered in his study.  As stated in Chapter 

Three, Sipple had to transform the response variables in his OLS models using the natural 

log, in order to eliminate the violation of the assumption of constant variance.  We will 

also use the natural log transformation, which gives us the more normal looking 

distributions in Figure 4.4. 
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Figure 4.4 - Transformed Distribution of OLS Responses 
 

Evaluation Measures for Logistic Regression 
 

We use four evaluation measures during our model building process: Average P-

Values, R2(U), Area Under the Receiver Operator Characteristic (ROC) Curve, and the 

Data Point-to-Variable Ratio.  We explain each of these evaluation measures in the 

following paragraphs. 

While there is a whole-model p-value calculation made in JMP®, we will not use 

it because it does not effectively assist us in differentiating between models (it is always 

very low).  Instead, we look at the p-values of the individual variables and their estimated 

parameters.  P-values tell us if there is statistical significance between an individual 

variable and the response variable, given its parameter estimate and the other variables in 

the model.  P-values lower than 0.05 indicate statistical significance with a 95% level of 

confidence.  For the purpose of measuring the overall significance of the model, we take 

the sum of the individual p-values and divide them by the number of variables in the 

model to arrive at an average p-value.  Lower average p-values will mean more 

predictive models. 
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According to Moore, “The R2(U) that JMP® uses is the difference of the negative 

log likelihood of the fitted model minus the negative log likelihood of the reduced model 

divided by the negative log likelihood of the reduced model (Moore, 2003:33)”.   In other 

words, it “is the proportion of the total uncertainty that is attributed to the model fit 

(JMP® 5.1, 2003:Help)”.  In laymen’s terms, R2(U) is a number between 0 and 1 that tells 

us how well our model fits our data; 0 being not at all, and 1 being perfectly.   

To understand what a ROC curve is, we must first define two terms: sensitivity 

and specificity.  Sensitivity is the proportion of true positives that our model produces, 

out of all possible positives.  Specificity is the proportion of true negatives that our model 

produces, out of all possible negatives.  The area under the ROC curve is discovered by 

plotting sensitivity (proportion of true positives) against 1-specificity (proportion of false 

positives).  This gives us a number between 0 and 1, with the goal to get as much area 

under the curve as possible (i.e. closer to 1).   

Finally, the data point-to-variable ratio is the number of observations our model is 

able to use (given the variables selected) divided by the number of predictor variables in 

the model.  A good rule of thumb is to have a ratio of no less than 10:1, but according to 

Neter et al., we could go as low as 6:1 (Neter, 1996:437).  The lower the ratio gets, the 

better the chance that our model will become statistically invalid.  For more information 

on the data point-to-variable ratio, see Sipple (2002). 

Logistic Regression Results 
 

Logistic regression is an effective tool for predicting binary outcomes.  The 

response variable for our logistic regression model is a Bernoulli random variable.  The 

two possible outcomes for this variable are 0 (no positive cost growth) and 1 (positive 
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cost growth).  Therefore, our models will attempt to predict whether cost growth will 

occur.  We build two logistic regression models, one to predict whether cost growth will 

occur in the Engineering cost category, and the other to predict whether cost growth will 

occur in the Schedule cost category.   

We use JMP 5.1® statistical analysis software to build our models using the 

methodology described in Chapter Three.  The following pages contain the results for the 

Engineering and Schedule logistic regression models. 

 
Engineering Cost Category 

The first model we build uses the Engineering Cost Growth response variable.  

We begin by regressing each predictor variable against the response variable and 

employing the evaluation measurements.  In round one, we are mostly concerned with 

finding variables whose p-values are less than 0.05.  Our regressions yield a total of 15 of 

these variables, which will be the “foundation” for further regressions.   

In round two, we take each of the 15 variables from round one, and run each of 

them with all other variables to find the best 15 two-variable models.  At this point we 

begin looking for the lowest average p-value to determine which variable performs the 

best with each of our original 15 foundation variables.  If a variable does not achieve an 

average p-value of 0.05 or less with any other variable, it is eliminated as a foundation 

variable.  Also, any models that contain individual variables whose p-values exceed 0.05 

are also not considered.  In round two, three of the original 15 variables fail to achieve an 

average p-value of 0.05 or less, leaving us with 12 two-variable models. 

Before continuing on to round three, we review how well our 81 predictor 

variables have performed up to this point.  We discover that 51 of the 81 predictor 
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variables do not achieve an individual p-value of 0.05 or less in round one, nor do they 

achieve an average p-value of 0.05 or less with any other variable.  From this we 

conclude that these variables have very little chance of making it into any final model 

since they don’t perform well by themselves or with any other variable.  In the interest of 

reducing the number of models we have to run, we exclude these variables in the 

following rounds, but will run them with our best models towards the end to confirm that 

they offer no additional predictive ability. 

In round three, we run our 12 two-variable models with each of the 30 un-

excluded variables.  At this point we begin to look at evaluation measurements more 

closely.  First, we check to see if the model has any individual p-values above 0.05.  If it 

does, we don’t consider it unless they are marginal (i.e. close to 0.05).  Next, we look at 

number of observations.  Models that violate the 10:1 data point to variable ratio are not 

considered.  Third, we look at average p-values.  Fourth, we look at R2(U).  Finally, we 

look at the ROC score.   

Deciding whether a variable will be added to the two-variable model is a 

combination of the last three evaluation measures.  In most cases, the models with the 

lowest average p-values also yield the highest R2(U) and ROC scores, and are therefore 

easy to pick.  In the rare instance where this is not the case, we make a judgment call 

which results in one of two outcomes: picking one model over another, or carrying both 

models forward to the next round.  We repeat this process until the addition of variables 

no longer yields favorable results.  When we reach this point, we have 48 models ranging 

in size from two to seven variables.  
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We choose to make model 48 our final full model because it has the best R2(U) 

and ROC scores, and still has an average p-value lower than 0.05.  As promised, we run 

the final full model with all the variables excluded after round two, and confirm that they 

offer no further improvement.  Table 4.1 summarizes the evaluation measurements for 

the best model of each size (from two to seven variables).  We do not include the data 

point-to-variable ratio for these models, because they all use at least 100 observations, 

easily meeting our data point-to-variable ratio criteria.  Attachment 6 provides the full 

JMP® analysis of model 48. 

 

Table 4.1 - Best 2-7 Variable Logistic Regression Models (Engineering) 
 

Model# # Variables Ave P-Value R2(U) ROC
2 2 0.0017 0.1517 0.7474
14 3 0.0105 0.2019 0.7758
27 4 0.0131 0.2359 0.8094
38 5 0.0111 0.2620 0.8292
45 6 0.0243 0.2760 0.8348
48 7 0.0346 0.2992 0.8562

Best Models Using 2-7 Variables

 

 
Now that we have chosen our final full model, we perform the manipulations 

mentioned in Chapter Three to see if we can make a better, reduced model.  This yields 

us one promising observation:  Discretizing variable 54 by making any value above 0.45 

true, we notice a significant improvement in its individual p-value.  Discretizing is the 

term we use to describe the process of transforming a continuous variable into a discrete 

variable.  The only problem is that this manipulation, while improving the overall model, 

causes the individual p-value of variable 12 to increase beyond an acceptable level.   We 

then remove variable 12, and discover a six variable model that meets our criteria.  No 
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further manipulations to the reduced model yield favorable results.  Table 4.2 compares 

the final full model to this reduced candidate. 

Table 4.2 - Full/Reduced Model Comparison (Engineering) 
 

Model# # Variables Ave P-Value R2(U) ROC
48 7 0.0346 0.2992 0.8348
49 6 0.0219 0.3264 0.8622

Full/Reduced Model Comparison

 

 
Compared to the final full model, 49 has the highest R2(U), and  the highest ROC 

score.  It also yields lower average p-values, and a data point-to-variable ratio in excess 

of 16:1.  Given these evaluation measures, we choose model 49 as our final reduced 

model.  To see all 49 models and their variables, refer to Attachments 1 and 5.  

Attachment 7 provides the full JMP® analysis on model 49.  The predictor variables used 

in model 49 are: 

Length of R&D in Funding Years 
Classification Secret? 
LRIP Planned? 
Lockheed Martin? 
Discretized Variable 54 (Proc Funding Yr Maturity % >.45?) 
Risk Mitigation? 
 
The final step for our reduced model is to validate it using the 20% of the 

database that we set aside prior to model building.  We do this by putting the entire 

database back together, running our reduced model, and comparing the actual response to 

the most likely response (generated by our model).   

Of the 27 data points we use in the validation, 26 are usable (96.3%).  Out of all 

135 data points in the database, 126 are usable (93.3%).  From this we conclude that our 

model is highly universal.  Of the 26 observations we use in the validation, our model 

yields 13 accurate predictions (50%).  Out of all 126 observations, our model yields 94 
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accurate predictions (74.6%).  Given this disparity between the full database and the 

validation set, we explore the potential differences between the 20% validation set and 

the 80% database.  We do this by looking at the distributions of each variable in both the 

20% and 80% database.  By randomizing the partitioning process in the beginning, we 

hope to get an even distribution of data amongst our predictor variables.  What we 

discover when we compare these distributions, is that we did not.  Table 4.3 compares the 

mean values for each variable in both databases.   

Table 4.3 - Comparison of Variable Means for the 20% and 80% Databases 
 

Variable 20% 80% % Difference
52 13.31 15.10 -11.9%
65 0.29 0.34 -14.7%
77 0.37 0.42 -11.9%
38 0.18 0.25 -28.0%
82 0.48 0.44 9.1%
68 0.81 0.80 1.3%

Variable Means for Both Databases

 

 
Note that the mean for four of the six variables is noticeably lower (more than 

10% difference) in the 20% database than in the 80% database.  Variable 38 has a 

substantial 28% lower mean in the 20% database.  We conclude from this that that our 

randomly selected 20% database does not accurately represent the entire database as it 

will yield noticeably lower values, and offers at least a partial explanation for our low 

validation score.  The JMP Analysis for these distributions can be found in attachments 

10 and 11. 

In conclusion, our logistic regression model to predict cost growth does have 

predictive capability as it does accurately predict cost growth for the programs in our 
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100% database 74.6% of the time, despite a poor validation score.  We also conclude that 

it is highly universal, as 93.3% of all the programs studied were usable. 

   
Schedule Cost Category 

The second model we build uses the Schedule Cost Growth response variable.  In 

round one, 12 variables have p-values of less than 0.05.  In round two, we discover that 

three foundation variables work very well with two other variables, so both models (for 

each of these foundation variables) will be used in the next round, leaving us with 15 

two-variable models.  Of our 81 predictor variables, we discover that 60 do not achieve 

an individual p-value of 0.05 or less in round one, nor do they achieve an average p-value 

of 0.05 or less with any other variable.  From this, we conclude that these variables have 

very little chance of making it into any final model since they don’t perform well by 

themselves or with any other variable, so they are excluded.  Continuing the process from 

round three on, we finish with 35 models ranging in size from two to five variables.  

We choose to make model 28 our final full model because it has the best R2(U) 

and ROC scores, and still has an average p-value lower than 0.05.  As promised, we run 

the final full model with all the variables excluded after round two, and confirm that they 

offer no further improvement.  Table 4.4 summarizes the evaluation measurements for 

the best model of each size (from two to four variables).  We do not include the data 

point-to-variable ratio for these models, because they all use at least 100 observations, 

easily meeting our data point-to-variable ratio criteria.  Attachment 8 provides the full 

JMP® analysis of model 48. 
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Table 4.4 - Best 2-4 Variable Logistic Regression Models (Schedule) 
 

Model# # Variables Ave P-Value R2(U) ROC
1 2 0.0006 0.2696 0.8356
16 3 0.0099 0.3062 0.8478
28 4 0.0163 0.3375 0.8667

Best Models Using 2-4 Variables

 

 
Manipulation of model 28 yield us favorable results.  First, when we discretize 

variable 54 such that all values above 0.43 are true, our evaluation measurements 

improve.  Second, when we add an interaction term between variables 36 and 77, our 

measurements improve further.  Table 4.5 compares the final full model to this reduced 

candidate. 

Table 4.5 - Full/Reduced Model Comparison (Schedule) 
 

Model# # Variables Ave P-Value R2(U) ROC
28 4 0.0163 0.3375 0.8667
36 5 0.0172 0.4392 0.8913

Full/Reduced Model Comparison

 

 
Compared to the final full model, 36 has the highest R2(U), and  the highest ROC 

score.  Its average p-values are slightly higher, but still well below 0.05, and has a data 

point-to-variable ratio in excess of 20:1.  Given these evaluation measures, we choose 

model 36 as our final reduced model.  To see all 36 models and their variables, refer to 

Attachments 2 and 5.  Attachment 9 provides the full JMP® analysis on model 36.  The 

predictor variables used in model 36 are: 
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Discretized Variable 54 (Proc Funding Yr Maturity % >.43?) 
68 Risk Mitigation? 
Marine Core Involvement? 
LRIP Planned? 
Interaction Term (MC Involvement? and LRIP Planned?) 
 
Next, we validate our model.  Of the 27 data points we use in the validation, 26 

are usable (96.3%).  Out of all 135 data points in the database, 128 are usable (94.8%).  

From this, we conclude that our model is highly universal.  Of the 26 observations we use 

in the validation, our model yields 13 accurate predictions (50%).  Out of all 128 

observations, our model yields 94 accurate predictions (78.1%).  Given this disparity 

between the full database and the validation set, we must again explore the potential 

differences between the 20% validation set and the 80% database.  We do this by looking 

at the distributions of each variable in both the 20% and 80% database.  Table 4.6 

compares the mean values for each variable in both databases.   

Table 4.6 - Comparison of Variable Means for the 20% and 80% Databases 
 

Variable 20% 80% % Difference
82 0.52 0.46 12.0%
68 0.81 0.80 0.5%
36 0.19 0.21 -13.1%
77 0.37 0.43 -13.1%

Variable Means for Both Databases

 

 
Note that the mean for three of the four variables is noticeably higher or lower 

(more than 10% difference) in the 20% database than in the 80% database.  While we 

conclude from this that that our randomly selected 20% database does not accurately 

represent the entire database, it is does not have any substantial differences and thus 

offers little explanation for our poor validation results.  The JMP® Analysis for these 

distributions can be found in attachments 12 and 13. 
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In conclusion, our logistic regression model to predict cost growth does have 

predictive capability as it does accurately predict cost growth for the programs in our 

100% database 78.1% of the time, despite a poor validation score.  We also conclude that 

it is highly universal, as 94.8% of all the programs studied are usable.   

Evaluation Measures for OLS Regression 
 

We use three evaluation measures during our model building process: Average P-

Values, Adjusted R2, and the Data Point-to-Variable Ratio.  Save for replacing R2(U) 

with Adjusted R2, these evaluation measures are the same OLS as they are for logistic 

regression. 

According to JMP 5.1®, R2 “estimates the proportion of the variation in the 

response around the mean that can be attributed to terms in the model rather than to 

random error,” and the adjusted R2 “adjusts R2 to make it more comparable over models 

with different numbers of parameters by using the degrees of freedom in its computation 

(JMP® 5.1, 2003:Help)”.  Given that we are comparing models with different numbers of 

parameters, we use adjusted R2, instead of R2.  Adjusted R2 is a number from 0 to 1, 0 

being that none of the variation in the response can be attributed to the model, and 1 

being that all of it can.  In laymen’s terms, the higher the adjusted R2, the more predictive 

the model. 

Another difference between OLS and logistic regression is that in OLS, we test 

assumptions after we select a final reduced model.  We have three assumptions tests to 

conduct:  Normality of the residuals, independence, and homoscedasticity of the 

residuals.  We test for normality of the residuals by conducting a Shapiro-Wilkes 

analysis, which fits the studentized residuals to a normal distribution and calculates a p-
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value indicating how well they fit.  P-values below .05 result in failure of this 

assumption.  Since this is not time series data, we test for independence by looking at the 

various data points and discussing relationships they have to each other and how they 

were collected.  We test homoscedasticity of the residuals by conducting a Breusch-

Pagan calculation which results in a p-value.  P-values below 0.05 indicate a failure of 

this assumption. 

Once we have completed our assumption tests, we perform a Cook’s Distance 

analysis.  Cook’s Distance is a tool that measures how far each data point used in the 

model is from the mean of that independent variable.  Data points that are far away from 

the mean may have too much influence on the model, and will be a candidate for 

removal.  Values from 0 to 0.25 are normal, values from 0.25 to 0.5 are marginal, and 

values above 0.5 will probably need to be removed.  After Cook’s Distance, we check the 

Variance Inflation Factor (VIF) scores.  VIF scores check for linear dependency amongst 

predictors.  This dependency may exist if VIF scores exceed 10.  Models with linear 

dependency may run the risk of being statistically invalid. 

OLS Regression Results 
 

OLS regression is an effective tool for predicting reasonably continuous 

outcomes.  In this case, we use OLS regression to predict the amount of cost growth that 

will occur in a program, once our logistic regression model predicts that cost growth will 

occur.  We build two OLS regression models, one to predict the amount of cost growth 

that will occur in the Engineering cost category, and the other to predict the amount of 

cost growth will occur in the Schedule cost category.  The following pages contain the 

results for the Engineering and Schedule OLS regression models. 
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Engineering Cost Category 

The first model we build uses the natural log of the Engineering Cost Growth % 

response variable.  We begin by regressing each predictor variable against the response 

variable and employing the evaluation measurements.  In round one, we are mostly 

concerned with finding variables whose p-values are less than 0.05.  Our regressions 

yield a total of five of these variables, which will be the “foundation” for further 

regressions.   

In round two, we take each of the five variables from round one, and run each of 

them with all other variables to find the best five two-variable models.  At this point we 

begin looking for the lowest average p-value to determine which variable performs the 

best with each of our original five foundation variables.  If a variable does not achieve an 

average p-value of 0.05 or less with any other variable, it is eliminated as a foundation 

variable.  Any models that contain individual variables whose p-values exceed 0.05 are 

not considered either.   

Before continuing on to round three, we review how well our 81 predictor 

variables have performed up to this point.  We discover that 73 of the 81 predictor 

variables do not achieve an individual p-value of 0.05 or less in round one, nor do they 

achieve an average p-value of 0.05 or less with any other variable.  From this, we 

conclude that these variables have very little chance of making it into any final model 

since they don’t perform well by themselves or with any other variable.  In the interest of 

reducing the number of models we have to run, we exclude these variables in the 

following rounds, but will run them with our best models towards the end to confirm that 

they offer no additional predictive ability. 
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In round three, we run our five two-variable models with each of the eight un-

excluded variables.  At this point we begin to look at evaluation measurements more 

closely.  First, we check to see if the model has any individual p-values above 0.05.  If it 

does, we do not consider it unless they are marginal (i.e. close to 0.05).  Next, we look at 

number of observations.  If the model violates the 10:1 data point-to-variable ratio, we do 

not consider it unless it is marginal (i.e. close to 10:1).  Third, we look at average p-

values.  Finally, we look at adjusted R2.   

Deciding whether a variable will be added to the two-variable model is a 

combination of the last two evaluation measures.  In most cases, the models with the 

lowest average p-values also yield the highest adjusted R2, and are therefore easy to pick.  

In the rare instance where this is not the case, we make a judgment call which results in 

one of two outcomes: picking one model over another, or carrying both models forward 

to the next round.  We repeat this process until the addition of variables no longer yields 

favorable results.  In this case, we discover no benefit to adding a third variable to the 

model.   

Given the fact that we only have a two-variable model, we run the 73 excluded 

variables with it and discover that two of them significantly improve the model.  First, 

variable 50 is added, then variable 57.  Adding further variables beyond this point offers 

no improvement.  Table 4.7 summarizes the evaluation measurements for the best model 

of each size (from two to four variables).  Unlike our logistic regression models, data 

point-to-variable ratio is now a bigger factor, as model 4 actually breaches 10:1 

threshold, but is still acceptable according to Neter.  Thus, we choose model 4 as our 
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final full model because of its high R2 and very low p-values.  Attachment 14 provides 

the full JMP® analysis of model  4. 

 

Table 4.7 - Best 2-4 Variable OLS Regression Models (Engineering) 
 

Model# # Variables Ave P-Value R2 DP:Var Ratio
2 2 0.0094 0.2447 20:1
3 3 0.0188 0.3226 13.3:1
4 4 0.0067 0.4717 9.5:1

Best Models Using 2-4 Variables

 

 
Now that we have chosen our final full model, we perform the manipulations 

mentioned in Chapter Three to see if we can make a better, reduced model.  This yields 

us one promising observation:  We create variable 83 by dividing variable 50 (funding 

years of procurement completed) by variable 57 (maturity of EMD%) to make one 

variable instead of two, which improves our model.  This manipulation then allows us to 

add a previously excluded variable (76), which significantly improves our model.  This 

manipulation achieves this by increasing the data point-to-variable ratio, thus creating 

“room” for another variable in the model. Table 4.8 compares the final full model to this 

reduced candidate. 

Table 4.8 - Full/Reduced Model Comparison (Engineering) 
 

Model# # Variables Ave P-Value R2 DP:Var Ratio
4 4 0.0067 0.4717 9.5:1
6 4 0.0048 0.5484 8.8:1

Full/Reduced Model Comparison

 

 
Note that the data point-to-variable ratio has dropped to about 9:1.  Given the 

drop in p-values and significant increase in R2, we deem this ratio to be acceptable and 

select the reduced candidate to be our final reduced model.  To see all six models and 
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their variables, refer to Attachments 3 and 5.  Attachment 15 provides the full JMP® 

analysis on model 6.  The predictor variables used in model 6 are: 

 
Quantity Currently Estimated for R&D 
Unit Cost 
Combined Variable 83 (Fund Years of Proc Completed/Maturity of EMD%) 
Program have a MSI? 
 
 
Next, perform the assumption tests, starting with normality of the residuals.  

Inspection of Figure 4.5 indicates that we may have a problem with this assumption.  

Graphically, the distribution looks somewhat normal, but we fail the Shapiro-Wilkes test 

with a p-value of less than 0.05.  We conclude that this is an acceptable outcome for this 

assumption test, and continue to the assumption of independence. 

 

-2 -1.5 -1 -0.5 0 .5 1 1.5 2

 Normal(0.03434,1.02746)

 Shapiro-Wilk W Tes t

  0.938026
W

  0.0487
Prob<W

Goodness-of-Fit T est

Fitted Normal

Studentize d Resid LN % Eng Cost G rowth

  

Figure 4.5 - Goodness of Fit Test for Normality (OLS Engineering) 
 

Next, we look at the assumption of independence.  Two characteristics of the 

database lead us to conclude that we pass this assumption.  First, the database is made up 

135 distinct programs.  No programs are repeated.  Second, our data was selected 
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randomly.  We simply used the latest SAR for each program, and used only programs 

that had a SAR between 1990 and 2002. 

Our final assumption test is for homoscedasticity (constant variance).  With a p-

value of 0.86, we pass the Breusch-Pagan test for homoscedasticity of the residuals, since 

the p-value is greater than 0.05. 

After completing the assumption tests, we perform a Cook’s Distance analysis to 

check for overly influential data points.  The first plot in Figure 4.6 indicates that data 

point 19 is well over the threshold of 0.5, so we remove it.  The next plot is the Cook’s 

Distance result with 19 removed.  Now it appears that data point 31 is in the marginal 

zone (between 0.25 and 0.50) so we remove it and run the model again.   
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Figure 4.6 - Cook’s Distance Plots (OLS Engineering) 
 

 
The third plot has both 19 and 31 removed, and shows no potential influential 

data points.  The removal of the marginal data point, however, causes the individual p-

value of variable 76 jump well over our threshold of 0.05.  Given that data point 31 was 

marginal, and the model performs better with it included, we conclude that the marginal 

Cook’s Distance score is acceptable and the parameters of our model will be generated 

with only data point 19 excluded.  Attachment 16 provides the full JMP® analysis of 
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model 4 with data point 19 excluded.  The final step before validation is to check the VIF 

scores.  Figure 4.7 shows that no VIF scores exceed 10, so we proceed to validation. 

 

Intercept
5  Qty currently estimated for R&D
3  Unit Cost
83  (50/57)
76  Program have a MS I?

Term
 -2.29296
-0.026373
-0.005825
 0.137765
-1.138272

Estimate
0.483138
0.005934
0.002515
0.039515
0.483723

Std Error
 -4.75
 -4.44
 -2.32
  3.49
 -2.35

t Ratio
<.0001
0.0001
0.0278
0.0016
0.0256

Prob>|t|
        .

1.0573576
1.0507865
1.1150278
1.1150715

VIF

Parameter Estimates

 

Figure 4.7 - VIF Scores (OLS Engineering) 
 

 
The final step for our reduced model is to validate it using the 20% of the 

database that we set aside prior to model building.  We do this by putting the entire 

database back together, running our reduced model, and observing how many times the 

actual cost growth falls below our predicted 90th percentile. 

Of the 12 data points we use in the validation, nine are usable (75%).  Out of all 

61 data points in the database, 44 are usable (72.1%).  From this, we conclude that our 

model is fairly universal.  Of the nine observations we use in the validation, our model 

yields eight accurate predictions (88.9%).  Out of all 44 observations, our model yields 

40 accurate predictions (90.1%).  From this, we conclude that our model is highly 

effective at predicting cost growth below the 90th percentile.   

In conclusion, our OLS regression model to predict cost growth does have highly 

predictive capability as it produces 90.1% accurate predictions up to the 90th percentile, 

and is also fairly universal, as 72.1% of the data points in our database are usable.   
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Schedule Cost Category 

The second model we build uses the natural log of the Schedule Cost Growth % 

response variable.  In round one, our regressions yield a total of ten foundation variables.  

Round two eliminates one foundation variable (it does not perform well with any other 

variable) and leaves us with nine two-variable models.  The results to this point also 

allow us to exclude 59 of the 81 predictor variables, as they do not achieve average p-

values below 0.05 by themselves, or with any other variable. 

We repeat the process from round three on, leaving us with four models ranging 

from two to five variables in size.  Table 4.9 summarizes the evaluation measurements 

for these models.  Although model 33 has a data point-to-variable ratio of about 9:1 (less 

than 10:1), we select it as our final full model because of its high R2 and extremely low p-

values.  Attachment 17 provides the full JMP® analysis of model 33. 

Table 4.9 - Best 2-4 Variable OLS Regression Models (Schedule) 
 

Model# # Variables Ave P-Value R2 DP:Var Ratio
9 2 0.0002 0.2447 24.5:1

11 3 0.0008 0.3216 15.3:1
21 4 0.0036 0.5300 11.5:1
33 5 0.0020 0.5811 9.2:1

Best Models Using 2-5 Variables

 

 
Manipulation of model 33 yields us one promising observation:  We discretize 

variable 50 by making any values greater than 9.5 true, which improves our model.  

Table 4.10 compares the final full model to this reduced candidate. 
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Table 4.10 - Full/Reduced Model Comparison (Schedule) 
 

Model# # Variables Ave P-Value R2 DP:Var Ratio
33 5 0.0020 0.5811 9.2:1
37 5 0.0019 0.6187 9.2:1

Full/Reduced Model Comparison

 

 
Given the drop in p-values and increase in R2,  we would have selected model 37 

to be our final reduced model.  But as we move on to the Cook’s Distance analysis, we 

are forced to remove a data point which causes a linear redundancy in the intercept and 

one of the independent variables.  This requires forcing the regression line through the 

origin to overcome this difficulty.  We are unable to use model 37, as a result, and model 

33 becomes our final reduced model.  To see all 37 models and their variables, refer to 

Attachments 4 and 5.  Attachment 18 provides the full JMP® analysis on model 33.  The 

predictor variables used in model 6 are: 

 
Procurement Started Based on Funding Years? 
Lockheed Martin? 
Space (Rand Definition) 
Funding Years of Procurement Completed 
Navy Involvement? 
 
 
Next, we perform the assumption tests, starting with normality of the residuals.  

Inspection of Figure 4.8 indicates that we pass this assumption, both graphically, and 

with the Shapiro Wilke’s p-value of 0.62.   
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Figure 4.8 - Goodness of Fit Test for Normality (OLS Schedule) 
 
 

Next, we look at the assumption of independence.  Two characteristics of the 

database lead us to conclude that we pass this assumption.  First, the database is made up 

135 distinct programs.  No programs are repeated.  Second, our data was selected 

randomly.  We simply used the latest SAR for each program, and used only programs 

that had a SAR between 1990 and 2002. 

Our final assumption test is for homoscedasticity (constant variance).  With a p-

value of 0.28, we pass the Breusch-Pagan test for homoscedasticity of the residuals, since 

the p-value is greater than 0.05. 

After completing the assumption tests, we perform a Cook’s Distance analysis to 

check for overly influential data points.  The first plot in figure 4.9 indicates that data 

point 46 is well over the threshold of 0.5, so we remove it.  The second plot is the Cook’s 

Distance results with 46 removed, which indicates that we no longer have any points 

above 0.5, nor any marginal points above 0.25. 
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Figure 4.9 - Cook’s Distance Plots (OLS Schedule) 
 

 
The removal of the overly influential data points, however, causes the average p-

values to increase, and the adjusted R2 to decrease, but no to the extent that the model 

should be thrown out.  Attachment 19 provides the full JMP® analysis of model 33 with 

data point 46 excluded.  The final step before validation is to check the VIF scores.  

Figure 4.10 shows that no VIF scores exceed 10, so we proceed to validation. 
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Figure 4.10 - VIF Scores (OLS Schedule) 
 

 
Finally, we validate our model to see how many times the actual cost growth falls 

below our predicted 90th percentile.  Of the 12 data points we use in the validation, 12 are 

usable (100%).  Out of all 61 data points in the database, 58 are usable (95.1%).  From 

this we conclude that our model is highly universal.  Of the 12 observations we use in the 

validation, our model yields 10 accurate predictions (83.3%).  Out of all 58 observations, 
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our model yields 52 accurate predictions (89.7%).  From this, we conclude that our model 

is highly effective at predicting cost growth below the 90th percentile.   

In conclusion, our OLS regression model to predict cost growth does have highly 

predictive capability as it produces 89.7% accurate predictions up to the 90th percentile, 

and is also highly universal, as 72.1% of the data points in our database were able to yield 

predictions.   
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V. Conclusions 
 
 

Justification for Research 
 

Defense spending has experienced  increased scrutiny as the high levels of 

spending of the Reagan Administration gave way to record-setting reductions during the 

Clinton Administration.  The threats that defense spending are designed to mitigate, 

however, have not reduced.  This results in a change of business practice in the defense 

acquisition community, which faces the challenge of retaining its credibility in the eyes 

of Congress and the American taxpayer.  To this point, the defense acquisition 

community has failed to retain its credibility, as despite numerous legislative reforms, 

cost growth on major defense acquisition programs has increased 9.9% since 1990 

(Suddarth, 2002:7).   

DoD leadership sees improvements in cost estimates as a logical way to decrease 

cost growth.  This philosophy is not new, as DoD directives have stated for years that the 

cost of major acquisition programs is to be considered an independent variable and that 

the goal is to estimate cost with 60-70% confidence.  Dr. Sambur and Lieutenant General 

Keys increased this confidence level to 90% while addressing the House and Armed 

Services Committee in 2003.   

The purpose of this research is to build regression models that can be used to 

predict cost growth with a 90% level of confidence so that major defense acquisition 

programs can be properly funded up front.  Such a business practice would decrease 

overall cost growth in the defense acquisition community, and restore credibility to its 

executives. 
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Limitations 
 

This research has three important limitations.  First, it only addresses the 

Engineering and Schedule cost categories.  Cost growth has two other categories that 

program managers have influence over: Estimating and Support.  Therefore, predictions 

made using our models will not reflect cost growth or cost savings in the other two 

categories.   

Second, our models are based on the relationships between variables in the EMD 

phase, and only make predictions for cost growth during that phase.  It is not reasonable 

to assume that these models can be used to predict cost growth outside of this phase. 

Third, these models only predict cost growth for efforts funded with procurement 

dollars.  It is not reasonable to assume that these models can be applied to efforts funded 

with other types of appropriated dollars. 

Finally, the strength of these models is limited to the unclassified portions of the 

SAR, and only programs that submitted a SAR from 1990-2002.  Relationships between 

classified variables or variables from programs that did not submit a SAR during this 

timeframe, are not used in the model-building process.  

Review of Methodology 
 

We validate and update the database originally developed by Sipple using the 

most current SAR database.  The data must be unclassified and from mature programs 

(i.e. at least three years into the EMD phase).  Once the database is updated, we review 

the predictor variables and delete, modify and add as needed.   

Next, we review the distributions of the response variables, and conclude that we, 

like Sipple, Bielecki and Moore, have a mixed-distribution with a discrete mass at zero, 
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which violates the assumption that our responses are reasonably continuous.  Therefore, 

we also elect to use the two-pronged logistic and multiple regression approach.  Next, we 

confirm that the logistic and multiple response variables have enough responses and 

variety in the responses to build sound models.  Finally, we partition the database:  80% 

for model building, and 20% for validation.  Then we proceed to model building. 

First, we build our logistic regression models, which predict whether cost growth 

will occur in the engineering and schedule categories.  We build the models one variable 

at a time by running combinations of variables through successive rounds, carrying 

forward models with the best performance in the evaluation measures (below). 

 
o Average individual p-values 
o R2(U) 
o Data point-to-variable ratio 
o Area under the receiver operating curve (ROC) 

 
 
We continue until the process of adding variables provides no further benefit.  

Based on the measures above, we select final full models, and perform manipulations in 

an attempt to increase their predictive ability.  Once we have selected final reduced 

models, we validate them against the 20% database and the 100% database to determine 

if they are predictive and universal. 

Second, we build our OLS regression models, to predict the level of cost growth 

that will occur in the engineering and schedule categories.  We build the models one 

variable at a time by running combinations of variables through successive rounds, 

carrying forward models with the best performance in the evaluation measures listed on 

the following page. 

 



 
 

72

o Average individual p-values 
o Adjusted R2 
o Data point-to-variable ratio 

 
 
We continue this until the process of adding variables produces no further benefit.  

Based on the measures above, we select final full models, and perform manipulations in 

an attempt to increase their predictive ability.  Once we have selected final reduced 

models, we look for overly influential data points and multicollinearity between the 

predictor variables using the Cook’s Distance test and Variance Inflation Factor analysis.   

Once we have models that make it to this point, we test to ensure they pass the 

assumptions of normality of the residuals, independence, and homoscedasticity of the 

residuals.  Once these tests are complete, we validate the models against the 20% 

database and the 100% database to determine if they are predictive and universal. 

Restatement of Results 
 
Logistic Regression 

We select model 49 as our final reduced model for the Engineering cost category.  

We restate evaluation measurements and validation results in Table 5.1.  We conclude 

that this model does have predictive capability as it does accurately predict cost growth 

for the programs in our 100% database 74.6% of the time, despite a poor validation score.  

We attribute the poor validation score, at least in part, to a validation set that does not 

accurately represent the population.  We also conclude that it is highly universal, as 

93.3% of all the programs studied are usable. Model 49 contains the following predictor 

variables. 
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Length of R&D in Funding Years 
Classification Secret? 
LRIP Planned? 
Lockheed Martin? 
Discretized Variable 54 (Proc Funding Yr Maturity % >.45?) 
Risk Mitigation? 

Table 5.1 - Overall Logistic Regression Results (Engineering) 
 

Model# # Variables Ave P-Value R2(U) ROC
49 6 0.0219 0.3264 0.8622

% Observations % Accurate % Observations % Accurate
Model# Validation Set Validation Set Full Data Set Full Data Set

49 96.3% 50.0% 93.3% 74.6%

Evaluation Measures for Final Reduced Model

Validation for Final Reduced Model

 

 
Model 36 is our best logistic regression model for the Schedule cost category, and 

its evaluation measures and validation results are restated in Table 5.2.  We conclude that 

this model does have predictive capability as it accurately predicts cost growth for the 

programs in our 100% database 78.1% of the time, despite a poor validation score.  We 

attribute at the poor validation, at least in part to the fact that 20% database does not 

accurately represent the population.  We also conclude that this model is highly universal, 

as 94.8% of all the programs studied were usable.  Model 36 contains the following 

predictor variables. 

 
Discretized Variable 54 (Proc Funding Yr Maturity % >0.43?) 
68 Risk Mitigation? 
Marine Core Involvement? 
LRIP Planned? 
Interaction Term (MC Involvement? and LRIP Planned?) 
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Table 5.2 - Overall Logistic Regression Results (Schedule) 
 

Model# # Variables Ave P-Value R2(U) ROC
36 4 0.0172 0.4392 0.8913

% Observations % Accurate % Observations % Accurate
Model# Validation Set Validation Set Full Data Set Full Data Set

36 96.3% 50.0% 94.8% 78.1%

Evaluation Measures for Final Reduced Model

Validation for Final Reduced Model

 

 
OLS Regression 

We select model 6 as our final reduced model for the Engineering cost category.  

We restate evaluation measurements and validation results in Table 5.3.  We conclude 

that this model does have predictive capability as it does accurately predict cost growth 

for the programs in our 100% database 90.1% of the time, and validates at 88.9%.  We 

also conclude that it is fairly universal, as 72.1% of all the programs studied are usable, 

as well as 75% of the validation set.  Model 6 contains the following predictor variables. 

 
Quantity Currently Estimated for R&D 
Unit Cost 
Combined Variable 83 (Fund Years of Proc Completed/Maturity of EMD%) 
Program have a MSI? 
 
 

Table 5.3 - Overall OLS Regression Results (Engineering) 
 

Model# # Variables Ave P-Value R2 DP:Var Ratio
6 4 0.0048 0.5484 8.8:1

% Observations % Accurate % Observations % Accurate
Model# Validation Set Validation Set Full Data Set Full Data Set

6 75.0% 88.9% 72.1% 90.1%

Evaluation Measures for Final Reduced Model

Validation for Final Reduced Model

 

 
Model 33 is our best final reduced model for the Schedule cost category.  We 

restate evaluation measurements and validation results in table 5.4.  We conclude that this 
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model is highly predictive as it accurately predicts cost growth for the programs in our 

100% database 89.7% of the time, and validates at 83.3%.  We also conclude that it is 

highly universal, as 95.1% of all the programs studied are usable, as well as 100% of the 

validation set.  Model 33 contains the following predictor variables. 

 
Procurement Started Based on Funding Years? 
Lockheed Martin? 
Space (Rand Definition) 
Funding Years of Procurement Completed 
Navy Involvement? 
 
 

Table 5.4 - Overall OLS Regression Results (Schedule) 
 

Model# # Variables Ave P-Value R2 DP:Var Ratio
33 5 0.0020 0.5811 9.2:1

% Observations % Accurate % Observations % Accurate
Model# Validation Set Validation Set Full Data Set Full Data Set

33 100.0% 83.3% 95.1% 89.7%

Evaluation Measures for Final Reduced Model

Validation for Final Reduced Model

 

 

Comparison to Moore’s Models 

 Being that Moore’s thesis is the only work involving procurement dollars, it may 

be useful to compare his models to ours.  Table 5.5 summarizes the evaluation measures 

and validations of the three sets of procurement-based models (two sets of ours and one 

set of Moore’s).  We make two important points for standardization purposes:  First, we 

calculate data point-to-variable ratios using the number of variables used in a model, 

excluding interaction terms.  Second, average p-values take into consideration 

interactions terms, but they do not include the variables that make up those interaction 

terms.  Third, validations on OLS models can be compared, even though we use a 90% 
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prediction bound while Moore’s thesis uses 80%.  This is because Moore calculated his 

80% upper bound as if we were using a two-tailed interval, which we are not.  Since we 

consider any prediction below the upper bound to be accurate, Moore is actually 

validating at 90% because he includes the lower 10% tail as an accurate prediction.  

Therefore, we are both validating at 90%, and can compare results. 

Table 5.5 - Comparison With Moore Thesis 

Response Variable # Variables Ave P-Value R2(U) ROC DP/Var Ratio
Engineering Cost Growth? 6 0.0219 0.3264 0.8622 16.7:1

Schedule Cost Growth? 4 0.0053 0.4392 0.8913 25.5:1
Overall Cost Growth? 3 0.0578 0.8307 0.9930 11.7:1

% Observations % Accurate % Observations % Accurate
Response Variable Validation Set Validation Set Full Data Set Full Data Set

Engineering Cost Growth? 96.3% 50.0% 93.3% 74.6%
Schedule Cost Growth? 96.3% 50.0% 94.8% 78.1%
Overall Cost Growth? 16.0% 100.0% 32.0% 94.9%

Response Variable # Variables Ave P-Value  Adj R2 DP/Var Ratio
Engineering Cost Growth% 4 0.0048 0.5484 8.8:1

Schedule Cost Growth% 5 0.0020 0.5811 9.2:1
Overall Cost Growth% 3 0.0096 0.5946 7.3:1

% Observations % Accurate % Observations % Accurate
Response Variable Validation Set Validation Set Full Data Set Full Data Set

Engineering Cost Growth% 75.0% 88.9% 72.1% 90.1%
Schedule Cost Growth% 100.0% 83.3% 95.1% 89.7%
Overall Cost Growth% 23.5% 100.0% 34.7% 100.0%

Validations for Logistic Regression Models

Evaluation Measures for Logisitic Regression

Validations for OLS Models

Evaluation Measures for OLS Regression

 

 
Moore’s logistic regression model outperforms our models on R2(U) and ROC 

scores, but has higher p-values.  His data point-to-variable ratio is noticeably lower, but 

still at an acceptable level.  His validation accuracy is much higher than both our models, 

but use a much smaller number of data points.  Overall, I would say that despite Moore’s 

impressive R2(U), ROC and validation accuracy scores, his logistic regression model may 

have limited real-world utility.  The main reason for this is that the number of data points 

used to generate his model is small compared to the number of data points available. 
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Moore’s OLS regression model slightly outperforms our models on adjusted R2 

and ROC but has higher p-values.  His data point-to-variable ratio is lower, but still at an 

acceptable level (according to Neter).  His validation accuracy is much higher than both 

our models, but use a much smaller number of data points.  In keeping with our 

comments in the previous paragraph, we would say that despite Moore’s higher adjusted 

R2 and perfect validation accuracy scores, his model may have limited real-world utility 

due to the limited use of the available data points.   

Recommendations 
 
 The results from this study further validate the potential for logistic and OLS 

regression in defense acquisition community.  Specifically, this two-pronged regression 

approach is effective at predicting if cost growth will occur, and very effective at 

providing a 90% prediction level for budgeting purposes.  This could greatly reduce cost 

overruns in the Department of Defense, restoring credibility to the executives of the 

defense acquisition community.   

In employing this recommendation, it is important to note the importance of the 

two-pronged approach, as neither this study nor its predecessors encounter a percent cost 

growth response variable with a reasonably continuous distribution.  This translates into 

constant variance problems for those who attempt to use straight OLS regression to 

predict cost growth in their programs. 
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Possible Follow-on Theses 
 

o Allow data to build under the new A B C Acquisitions Milestone Phases, 
then expand the database and perform the same methodology 

 
o Explore a way to convert the old I II III Milestone phased data into 

the new A B C phased data 
 

o Identify programs that did not have significant overruns and 
evaluate their risk estimating methodology to see if there is a best 
methodology (Sipple, 2002:121) 

 
o Build regression models to predict zero cost growth or cost 

savings, to determine the characteristics of highly successful 
programs 

 
o Create a program utilizing the CERs developed from this and other 

analyses (Sipple, 2002:121) 
 
o Explore the applicability of our results to the Monte Carlo 

simulation technique of risk analysis (Sipple, 2002:121) 
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Attachment 1 
 

Best Logistic Regression Models (Engineering Cost Category) 
 

Model # Variables # Variables
Cum Ind P-

Values
Ave P-
Values R2(U) ROC

1 51,68 2 0.0198 0.0099 0.1053 0.7236
2 50,77 2 0.0034 0.0017 0.1517 0.7474
3 80,77 2 0.0076 0.0038 0.1296 0.7348
4 81,12 2 0.0140 0.0070 0.1141 0.7162
5 47,77 2 0.0152 0.0076 0.0985 0.6907
6 54,77 2 0.0048 0.0024 0.1113 0.6779
7 79,49 2 0.0142 0.0071 0.1057 0.7222
8 52,12 2 0.0164 0.0082 0.1015 0.7097
9 62,12 2 0.0187 0.0094 0.1019 0.6790
10 48,54 2 0.0367 0.0184 0.0832 0.6909
11 73,71 2 0.0119 0.0060 0.0864 0.6722
12 7,68 2 0.0368 0.0184 0.0987 0.6778
13 51,68,54 3 0.0490 0.0163 0.1434 0.7475
14 50,77,68 3 0.0315 0.0105 0.2019 0.7758
15 80,77,65 3 0.0221 0.0074 0.1693 0.7638
16 81,12,65 3 0.0276 0.0092 0.1535 0.7509
17 47,77,65 3 0.0195 0.0065 0.1422 0.7312
18 54,77,81 3 0.0198 0.0066 0.1581 0.7478
19 79,49,12 3 0.0465 0.0155 0.1454 0.7514
20 52,12,65 3 0.0253 0.0084 0.1423 0.7431

21 62,12,73 3 0.0508 0.0169 0.1336 0.7281
22 48,54,77 3 0.0359 0.0120 0.1446 0.7338
23 73,71,50 3 0.0097 0.0032 0.1772 0.7769
24 7,68,65 3 0.0535 0.0178 0.1339 0.7403
25 51,68,54,77 4 0.0363 0.0091 0.2132 0.7968
26 50,77,68,65 4 0.0661 0.0165 0.2327 0.8026
27 80,77,65,68 4 0.0523 0.0131 0.2359 0.8094
28 81,12,65,18 4 0.0404 0.0101 0.1944 0.7829
29 47,77,65,68 4 0.0715 0.0179 0.2042 0.7838
30 54,77,81,68 4 0.0357 0.0089 0.2226 0.8034

31 79,49,12,77 4 0.0498 0.0125 0.1720 0.7600
32 52,12,65,77 4 0.0318 0.0080 0.1828 0.7691
33 62,12,73,71 4 0.0447 0.0112 0.1846 0.7723
34 48,54,77,65 4 0.0413 0.0103 0.1802 0.7672
35 73,71,50,77 4 0.0405 0.0101 0.2281 0.8044
36 7,68,65,77 4 0.0508 0.0127 0.1760 0.7836
37 51,68,54,77,65 5 0.0771 0.0154 0.2435 0.8123
38 54,77,81,68,65 5 0.0556 0.0111 0.2620 0.8292
39 79,49,12,77,65 5 0.0732 0.0146 0.2086 0.7898
40 52,12,65,77,38 5 0.0758 0.0152 0.2393 0.8103
41 62,12,73,71,38 5 0.0825 0.0165 0.1985 0.7814
42 48,54,77,65,68 5 0.0566 0.0113 0.2464 0.8131
43 73,71,50,77,68 5 0.0873 0.0175 0.2505 0.8172
44 7,68,65,77,50 5 0.1228 0.0246 0.2585 0.8278
45 54,77,81,68,65,38 6 0.1455 0.0243 0.2760 0.8348
46 52,12,65,77,38,54 6 0.1506 0.0251 0.2705 0.8259
47 54,77,81,68,65,38,12 7 0.3067 0.0438 0.2930 0.8394
48 52,12,65,77,38,54,68 7 0.2420 0.0346 0.2992 0.8473
49 52,65,77,38,82,68 6 0.1312 0.0219 0.3264 0.8622

Color Key:
Final Full Model

Final Reduced Model  
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Attachment 2 
 

Best Logistic Regression Models (Schedule Cost Category) 

Model # Variables # Variables
Cum Ind P-

Values
Ave P-
Values R2(U) ROC

1 54,68 2 0.0012 0.0006 0.2696 0.8356
2 54,74 2 0.0097 0.0049 0.1693 0.7632
3 50,68 2 0.0040 0.0020 0.2063 0.8189
4 68,80 2 0.0086 0.0043 0.1660 0.7663
5 68,62 2 0.0116 0.0058 0.2057 0.7325
6 80,46 2 0.0339 0.0170 0.1138 0.7450
7 62,46 2 0.0510 0.0255 0.1525 0.7009
8 47,46 2 0.0369 0.0185 0.1023 0.7165
9 64,68 2 0.0622 0.0311 0.1339 0.7063

10 47,68 2 0.0225 0.0113 0.1445 0.7448
11 46,50 2 0.0300 0.0150 0.1359 0.7816
12 46,54 2 0.0223 0.0112 0.1848 0.7708
13 49,46 2 0.0605 0.0303 0.0812 0.6992
14 55,68 2 0.0199 0.0100 0.1445 0.7556
15 57,68 2 0.0534 0.0267 0.1509 0.7374
16 64,68,36 3 0.0296 0.0099 0.3062 0.8478
17 54,74,68 3 0.0344 0.0115 0.3041 0.8521
18 50,68,62 3 0.0743 0.0248 0.2481 0.8313
19 68,80,49 3 0.0179 0.0060 0.2171 0.8195
20 68,62,55 3 0.0319 0.0106 0.2467 0.8267
21 62,46,55 3 0.0612 0.0204 0.1922 0.7829

22 47,46,68 3 0.0942 0.0314 0.1885 0.7784
23 64,68,11 3 0.0750 0.0250 0.1747 0.7420
24 47,68,79 3 0.0467 0.0156 0.1864 0.7640
25 46,50,74 3 0.0504 0.0168 0.1752 0.8028
26 46,54,74 3 0.0277 0.0092 0.2433 0.8137
27 55,68,79 3 0.0059 0.0020 0.2314 0.8059
28 54,68,36,77 4 0.0651 0.0163 0.3375 0.8667

29 68,62,55,36 4 0.0625 0.0156 0.2785 0.8439
30 68,62,55,11 4 0.0789 0.0197 0.2818 0.8414
31 62,46,55,36 4 0.0884 0.0221 0.2298 0.8070
32 62,46,55,74 4 0.0681 0.0170 0.2299 0.8011
33 46,50,74,62 4 0.1118 0.0280 0.2232 0.8096
34 55,68,79,46 4 0.0738 0.0185 0.2627 0.8266
35 82,68,36,77 4 0.0614 0.0154 0.3595 0.8699
36 82,68,36,77,(36,77)* 5 0.0860 0.0172 0.4392 0.8913

Color Key:
Final Full Model

Final Reduced Model

* Parentheses indicate interaction term  
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Attachment 3 
 

Best OLS Models (Engineering Cost Category) 

Model # Variables # Variables
Cum Ind P-

Values
Ave P-
Values Adj R2

1 7,16 2 0.0681 0.0341 0.1461
2 5,3 2 0.0188 0.0094 0.2447
3 5,3,50 3 0.0354 0.0118 0.3226
4 5,3,50,57 4 0.0268 0.0067 0.4717
5 5,3,50,76 4 0.0399 0.0100 0.4491
6 5,3,83,76 4 0.0190 0.0048 0.5484

Color Key:
Final Full Model

Final Reduced Model  
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Attachment 4 
 

Best OLS Models (Schedule Cost Category) 
 

Model # Variables # Variables
Cum Ind P-

Values
Ave P-
Values Adj R2

1 50,43 2 0.0094 0.0047 0.3105
2 54,23 2 0.0093 0.0047 0.2207
3 43,38 2 0.0096 0.0048 0.2321
4 62,38 2 0.0080 0.0040 0.2793
5 19,50 2 0.0172 0.0086 0.1943
6 38,62 2 0.0080 0.0040 0.2791
7 55,23 2 0.0241 0.0121 0.1625
8 57,38 2 0.0710 0.0355 0.1654
9 1,50 2 0.0003 0.0002 0.3216
10 1,80 2 0.0007 0.0004 0.2844
11 50,43,38 3 0.0024 0.0008 0.4496
12 50,43,1 3 0.0098 0.0033 0.4486
13 54,23,38 3 0.0580 0.0193 0.3249
14 43,38,80 3 0.0175 0.0058 0.4219
15 62,38,18 3 0.0032 0.0011 0.4061
16 62,38,50 3 0.0080 0.0027 0.4197
17 19,50,35 3 0.0037 0.0012 0.3368
18 80,1,8 3 0.0199 0.0066 0.3927
19 55,23,43 3 0.0721 0.0240 0.2661
20 1,50,8 3 0.0098 0.0033 0.4486
21 50,43,38,1 4 0.0145 0.0036 0.5300
22 50,43,1,35 4 0.0150 0.0038 0.5283
23 50,23,38,43 4 0.0517 0.0129 0.4892
24 43,38,80,18 4 0.0195 0.0049 0.4574
25 62,38,18,50 4 0.0245 0.0061 0.4870
26 62,38,50,1 4 0.0212 0.0053 0.5131
27 19,50,35,42 4 0.4349 0.1087 0.4348
28 80,1,8,35 4 0.0600 0.0150 0.4377
29 1,50,8,35 4 0.0291 0.0073 0.4989
30 50,43,38,1,35 5 0.0711 0.0142 0.5696
31 50,23,38,43,18 5 0.0484 0.0097 0.5490
32 43,38,80,18,1 5 0.0593 0.0119 0.5157
33 62,38,18,50,35 5 0.0099 0.0020 0.5811
34 62,38,50,1,18 5 0.0554 0.0111 0.5517
35 19,50,35,42,1 5 0.0141 0.0028 0.5696
36 1,50,8,35,56 5 0.0427 0.0085 0.5512
37 62,38,18,35,82 5 0.0096 0.0019 0.6187

Color Key:
Final Full Model

Final Reduced Model  
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Attachment 5 
 

List of Original Variables (by number) 
 
 

1  Total Cost CY $M 2002 42  Litton
2  Total Quantity 43  General Dynamics
3  Unit Cost 44  No Major Defense Contractor
4  Qty planned for R&D 45  More than 1 Major Defense Contractor
5  Qty currently estimated for R&D 46  Fixed-Price EMD Contract?
6  ACAT 47  Maturity (Funding Yrs complete)
7  ACAT 1? 48  Funding YR Total Program Length
8  Air 49  Funding Yrs of R&D Completed
9  Land 50  Funding Yrs of Proc Completed
10 Space 51  Length of Proc in Funding Yrs
11  Sea 52  Length of R&D in Funding Yrs
12  Electronic 53  R&D Funding Yr Maturity %
13  Helo 54  Proc Funding Yr Maturity %
14  Missile 55  Total Funding Yr Maturity %
15  Aircraft 56  Actual Length of EMD
16  Munition 57  Maturity of EMD %
17  Land Vehicle 58  Time from MSII to IOC (in months)
18  Space (RAND) 59  Maturity of EMD at IOC%
19  Ship 60  LRIP Qty Planned
20  Other 61  LRIP Qty Current Estimate
21  # of Svs 62  Proc Started based on Funding Yrs?
22  Svs>1 63  Proc Funding before MS III?
23  Svs >2 64  # Product variants in this SAR
24  Svs>3 65  Class - S
25  Service = Navy only 66  Class - C
26  Service = Joint 67  Class - U
27  Service = Army only 68  Risk Mitigation?
28  Service = Marines only 69  Versions Previous to SAR
29  Service = AF only 70  Modification?
30  Lead Svc = Army 71  Prototype?
31  Lead Svc = Navy 72  Dem/Val Prototype?
32  Lead Svc = DoD 73  EMD Prototype?
33  Lead Svc = AF 74  PE ?
34  AF involvement 75  Significant pre-EMD activity?
35  N involvement 76  Program have a MS I?
36  MC involvement 77  LRIP Planned?
37  AR involvement 78  % R&D of Total Program (years)
38  Lockheed-Martin 79  % Proc of Total Program (years)
39  Northrop Grumman 80  Fund Years of R&D + Prod Complete
40  Boeing 81  Length of R&D + Prod Funding Years
41  Raytheon  
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Attachment 6 
 

JMP 5.1® Statistical Analysis: 
Final Full Logistic Regression Model (Engineering Cost Category) 

 
 

Difference
Full
Reduced

Model
 20.591359
 48.222523
 68.813881

-LogLikelihood
       7

DF
41.18272

ChiSquare
  <.0001

Prob>ChiSq

RSquare (U)
Observations (or Sum Wgts)

 0.2992
    100

Converged by Gradient

Whole Model Test

Lack Of Fit
Saturated
Fitted

Source
     92
     99
      7

DF
 48.222523
  0.000000
 48.222523

-LogLikelihood
96.44505

ChiSquare

0.3551
Prob>ChiSq

Lack Of Fit

Intercept
52  Length of R&D in Funding Yrs
12  Electronic
65  Class - S
77  LRIP Planned?
38  Lockheed-Martin
54  Proc Funding Yr Maturity %
68  Risk Mitigation?

Term
3.55330243
-0.0937586
1.03085856
1.30836431
-1.9521659
1.29615088
-1.8114624
-1.3463647

Estimate
 1.166484
0.0344455
0.5868404
0.5693017
0.6470295
0.6270468
0.8661215
0.7075558

Std Error
  9.28
  7.41
  3.09
  5.28
  9.10
  4.27
  4.37
  3.62

ChiSquare
0.0023
0.0065
0.0790
0.0216
0.0026
0.0387
0.0365
0.0571

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

52  Length of R&D in Funding Yrs
12  Electronic
65  Class - S
77  LRIP Planned?
38  Lockheed-Martin
54  Proc Funding Yr Maturity %
68  Risk Mitigation?

Source
    1
    1
    1
    1
    1
    1
    1

Nparm
    1
    1
    1
    1
    1
    1
    1

DF
7.40895749
3.08573186
5.28168495
9.10301612
4.27278663
4.37422425
3.62079545

Wald ChiSquare
  0.0065
  0.0790
  0.0216
  0.0026
  0.0387
  0.0365
  0.0571

Prob>ChiSq

Effect Wald Tests

Tr
ue

 P
os

iti
ve

S
en

si
tiv

ity

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00
1-Specificity
False Positive

Using Engineering Cost Growth? Procurement='1' to be the positive level
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Attachment 7 
 

JMP 5.1® Statistical Analysis: 
Final Reduced Logistic Regression Model (Engineering Cost Category) 

 
 

Difference
Full
Reduced

Model
 22.461072
 46.352809
 68.813881

-LogLikelihood
       6

DF
44.92214

ChiSquare
  <.0001

Prob>ChiSq

RSquare (U)
Observations (or Sum Wgts)

 0.3264
    100

Converged by Gradient

Whole Model Test

Lack Of Fit
Saturated
Fitted

Source
     81
     87
      6

DF
 39.944585
  6.408224
 46.352809

-LogLikelihood
79.88917

ChiSquare

0.5140
Prob>ChiSq

Lack Of Fit

Intercept
52  Length of R&D in Funding Yrs
65  Class - S
77  LRIP Planned?
38  Lockheed-Martin
82 Discrete54
68  Risk Mitigation?

Term
4.58102782
-0.0863098
1.16175564
-2.6021887
1.32128903
-2.4572251
-1.6539073

Estimate
 1.154231
0.0365042
0.5855777
0.7626746
0.6677042
0.7552747
0.6888368

Std Error
 15.75
  5.59
  3.94
 11.64
  3.92
 10.58
  5.76

ChiSquare
<.0001
0.0181
0.0473
0.0006
0.0478
0.0011
0.0163

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

52  Length of R&D in Funding Yrs
65  Class - S
77  LRIP Planned?
38  Lockheed-Martin
82 Discrete54
68  Risk Mitigation?

Source
    1
    1
    1
    1
    1
    1

Nparm
    1
    1
    1
    1
    1
    1

DF
5.59028211
3.93604978
 11.641233
3.91586242
 10.584736
5.76487132

Wald ChiSquare
  0.0181
  0.0473
  0.0006
  0.0478
  0.0011
  0.0163

Prob>ChiSq

Effect Wald Tests
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Attachment 8 
 

JMP 5.1® Statistical Analysis: 
Final Full Logistic Regression Model (Schedule Cost Category) 

 
 

Difference
Full
Reduced

Model
 23.698944
 46.511084
 70.210028

-LogLikelihood
       4

DF
47.39789

ChiSquare
  <.0001

Prob>ChiSq

RSquare (U)
Observations (or Sum Wgts)

 0.3375
    102

Converged by Gradient

Whole Model Test

Lack Of Fit
Saturated
Fitted

Source
     58
     62
      4

DF
 35.564077
 10.947008
 46.511084

-LogLikelihood
71.12815

ChiSquare

0.1154
Prob>ChiSq

Lack Of Fit

Intercept
54  Proc Funding Yr Maturity %
68  Risk Mitigation?
36  MC involvement
77  LRIP Planned?

Term
5.65003797
-4.2019332
-2.9193708
-1.4916331
-1.1846196

Estimate
1.2581802
 0.912788
0.9350232
0.6274797
0.5930038

Std Error
 20.17
 21.19
  9.75
  5.65
  3.99

ChiSquare
<.0001
<.0001
0.0018
0.0174
0.0458

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

54  Proc Funding Yr Maturity %
68  Risk Mitigation?
36  MC involvement
77  LRIP Planned?

Source
    1
    1
    1
    1

Nparm
    1
    1
    1
    1

DF
21.1913413
 9.7484086
5.65099103
3.99064321

Wald ChiSquare
  0.0000
  0.0018
  0.0174
  0.0458

Prob>ChiSq

Effect Wald Tests
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Attachment 9 
 

JMP 5.1® Statistical Analysis: 
Final Reduced Logistic Regression Model (Schedule Cost Category) 

 
 

Difference
Full
Reduced

Model
 30.838620
 39.371408
 70.210028
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Converged by Gradient
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-LogLikelihood
5.011245
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Intercept
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77  LRIP Planned?
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<.0001
0.0009
0.0422
0.0385
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Parameter Estimates

82  Discrete 54
68  Risk Mitigation?
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77  LRIP Planned?
36  MC involvement*77  LRIP Planned?
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JMP 5.1® Statistical Analysis: 
20% Database Variable Distributions (Engineering Cost Category) 
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JMP 5.1® Statistical Analysis: 
80% Database Variable Distributions (Engineering Cost Category) 
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JMP 5.1® Statistical Analysis: 
20% Database Variable Distributions (Schedule Cost Category) 
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JMP 5.1® Statistical Analysis: 
80% Database Variable Distributions (Schedule Cost Category) 
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JMP 5.1® Statistical Analysis: 
Final Full OLS Regression Model (Engineering Cost Category) 
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JMP 5.1® Statistical Analysis: 
Final Reduced OLS Regression Model (Engineering Cost Category) 
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JMP 5.1® Statistical Analysis: 
Final Reduced OLS Regression Model  

(Engineering Cost Category, data point 19 excluded) 
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JMP 5.1® Statistical Analysis: 
Final Full OLS Regression Model (Schedule Cost Category) 
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F Ratio

  0.6528
Prob > F

0.8655
Max RSq

Lack Of Fit

Intercept
62  Proc Started based on Funding Yrs?
38  Lockheed-Martin
18  Space (RAND)
50  Funding Yrs of Proc Completed
35  N involvement

Term
-9.740498
5.3666135
-1.686256
 2.944789
0.1187131
 1.223305

Estimate
1.265486
1.271278
0.468593
0.981521
0.035013
0.382737

Std Error
 -7.70
  4.22
 -3.60
  3.00
  3.39
  3.20

t Ratio
<.0001
0.0001
0.0009
0.0046
0.0016
0.0027

Prob>|t|

Parameter Estimates

62  Proc Started based on Funding Yrs?
38  Lockheed-Martin
18  Space (RAND)
50  Funding Yrs of Proc Completed
35  N involvement

Source
   1
   1
   1
   1
   1

Nparm
   1
   1
   1
   1
   1

DF
 25.928248
 18.841243
 13.096719
 16.725871
 14.863529

Sum of Squares
 17.8205
 12.9496
  9.0014
 11.4957
 10.2157

F Ratio
  0.0001
  0.0009
  0.0046
  0.0016
  0.0027

Prob > F

Effect Tests
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Attachment 18 
 

JMP 5.1® Statistical Analysis: 
Final Reduced OLS Regression Model (Schedule Cost Category) 
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0.627681
0.581141
1.206221
 -3.2145

      46

Summary of Fit

Model
Error
C. Total

Source
    5
   40
   45

DF
  98.11548
  58.19872
 156.31419

Sum of Squares
 19.6231
  1.4550

Mean Square
 13.4870

F Ratio

  <.0001
Prob > F

Analysis of Variance

Lack Of Fit
Pure Error
Total Error

Source
   27
   13
   40

DF
 37.166649
 21.032068
 58.198717

Sum of Squares
 1.37654
 1.61785

Mean Square
  0.8508
F Ratio

  0.6528
Prob > F

0.8655
Max RSq

Lack Of Fit

Intercept
62  Proc Started based on Funding Yrs?
38  Lockheed-Martin
18  Space (RAND)
50  Funding Yrs of Proc Completed
35  N involvement

Term
-9.740498
5.3666135
-1.686256
 2.944789
0.1187131
 1.223305

Estimate
1.265486
1.271278
0.468593
0.981521
0.035013
0.382737

Std Error
 -7.70
  4.22
 -3.60
  3.00
  3.39
  3.20

t Ratio
<.0001
0.0001
0.0009
0.0046
0.0016
0.0027

Prob>|t|

Parameter Estimates

62  Proc Started based on Funding Yrs?
38  Lockheed-Martin
18  Space (RAND)
50  Funding Yrs of Proc Completed
35  N involvement

Source
   1
   1
   1
   1
   1

Nparm
   1
   1
   1
   1
   1

DF
 25.928248
 18.841243
 13.096719
 16.725871
 14.863529

Sum of Squares
 17.8205
 12.9496
  9.0014
 11.4957
 10.2157

F Ratio
  0.0001
  0.0009
  0.0046
  0.0016
  0.0027

Prob > F

Effect Tests
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Attachment 19 
 

JMP 5.1® Statistical Analysis: 
Final Reduced OLS Regression Model  

(Engineering Cost Category, data point 46 excluded) 
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Error
C. Total

Source
    4
   40
   44

DF
  69.37201
  58.19872
 127.57073

Sum of Squares
 17.3430
  1.4550

Mean Square
 11.9199

F Ratio

  <.0001
Prob > F

Analysis of Variance

Lack Of Fit
Pure Error
Total Error

Source
   27
   13
   40

DF
 37.166649
 21.032068
 58.198717

Sum of Squares
 1.37654
 1.61785

Mean Square
  0.8508
F Ratio

  0.6528
Prob > F

0.8351
Max RSq

Lack Of Fit

Intercept
62  Proc Started based on Funding Yrs?
38  Lockheed-Martin
18  Space (RAND)
50  Funding Yrs of Proc Completed
35  N involvement
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 Biased
 Zeroed

-4.373885
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-1.686256
 2.944789
0.1187131
 1.223305

Estimate
0.432744

       0
0.468593
0.981521
0.035013
0.382737

Std Error
-10.11
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 -3.60
  3.00
  3.39
  3.20

t Ratio
<.0001
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0.0009
0.0046
0.0016
0.0027

Prob>|t|

Parameter Estimates

62  Proc Started based on Funding Yrs?
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